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Energy balance equation

The thermal energy production P in a region Ṽ during a time interval τ
is equal to the sum of the internal energy storage ∆u in Ṽ and the heat
Q that flows across the boundary of the region Ṽ in the same interval τ .

P = ∆u+Q (in joule)

A distinctive feature of all balance laws is that they can be applied to
regions of whatever shape and extension and for whatever interval of
time.

P

Q
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Energy balance equation: local formulation

By letting the volume Ṽ and the time interval τ approach to zero
(infinitesimal) ∫

τ

∫
Ṽ

σdV dt = ∆u+

∫
τ

∮
∂Ṽ

~q · ~dSdt

σ and ~q integrable

~q: heat flux density (W m−2)

σ: heat source (W m−3)

Applying the divergence theorem∫
τ

∫
Ṽ

σdV dt = ∆u+

∫
τ

∫
Ṽ

∇ · ~qdV dt

divergence theorem
~q differentiable
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Energy balance equation: local formulation

Exploiting the arbitrariety of V∫
τ

σdt = ∆U +

∫
τ

∇ · ~qdt

U differentiable in space

U : internal energy density (Jm−3)

Exploiting the arbitrariety of τ

σ =
∂U

∂t
+∇ · ~q

U differentiable in time
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Internal Energy

The thermal energy production P in a region Ṽ during a time interval τ
is related to the temperature by the state equation

u = u0 + CT (in joule) (1)

C: thermal capacity (J K−1)

If the volume approaches zero, the internal energy density becomes

U = U0 + ρcT (2)

ρ: volumetric mass density (kg m−3)

c: specific heat (J kg−1 K−1)
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Fourier’s law

The heat flux Φ crossing a plane surface element S̃ is proportional to the
area S, to the temperature difference ∆T between two points which lie
on the normal to the plane surface element. Moreover it is inversely
proportional to the distance ∆x between the two points and it has the
direction opposite to that of the temperature increase:

Φ

S
= −λ∆T

∆x

by letting ∆x approach zero:

qx =
Φ

S
= −λdT

dx

or, more generally:

~q = −λ∇T
x2

T2

x

x1

T1

qx
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Differential (local) view

Conservation of energy law:

∂U

∂t
+∇ · ~q = σ

Fourier’s law:
~q = −λ∇T = −λ~g

State equation:
U = U0 + ρcT

By substitution, one obtains the parabolic partial differential equation:

ρc
∂T

∂t
−∇ · λ∇T = σ

to be discretized...
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Differential (local) view
E. Tonti / Journal of Computational Physics 257 (2014) 1260–1290 1261

Fig. 1. (left) The tortuous path to obtain a numerical solution to a physical problem; (right) the direct procedure.

Since computers do not have the divine spark of intelligence, peculiar to human beings, they cannot conceive the notion
of limit and are therefore confined to use algebra, not the infinitesimal calculus. Hence, to apply the numerical methods
we are forced to return to a discrete formulation using one of the many methods of discretization, such as FEM, BEM, FVM,
FDM, etc.

If we explained this process to a person who is not familiar with physics, this person might ask: Why do we switch from
a discrete formulation derived from experimental measurements to a differential formulation and then go back to a discrete
formulation? Why do we follow this convoluted process? Why don’t we keep the discrete formulation from the outset? (See
Fig. 1.)

A direct discrete approach to physical laws is possible and easy to obtain: but we must change our habits of considering
the differential formulation as indispensable or simply privileged.

2. The mathematical description of physics

The peculiarity of the physical science, with respect to other sciences of nature, is that physical systems have many
quantitative attributes. These quantitative attributes are responsible for the introduction of physical quantities which allows
a quantitative description of the physical phenomena. It follows that the behavior of a phenomenon, i.e. its law, is described
by the relationship between the pertinent physical quantities, i.e. by an equation.

With physical quantities and equations, mathematics makes its majestic entrance into physics.
But we must never forget that each measurement process can be performed with a limited accuracy, and this compels us

to introduce the concept of tolerance of a measurement. Every measuring instrument belongs to a given class of precision.
In measurement an “infinite” precision, in the sense of a limit process of mathematics, is meaningless. The same positioning
of the measuring probe in a space region implies a tolerance. No measurement of a physical quantity is “exact”. The notion
of exactness is alien to the mind and to the practice of engineers and physicists!

2.1. Exact and approximate solutions

In our culture, trained by three centuries of differential formulation of physical laws, the differential formulation is so
familiar that we are led to think that it is the “natural” formulation for physics. Moreover we are convinced that only the
solution of a differential equation is the “exact” solution of a physical problem.

However, we know well that only in a few elementary cases, with regions of simple shape, with the most simple
boundary conditions and with particular distributions of sources in the region we can obtain a solution in a closed form, i.e.
an analytical solution. Hence the “exact” solution, that is promised by the differential formulation, is hardly ever attained
in practice. By contrast, the great technological progress of our days is made possible by the fact of being able to have an
approximate solution, in particular a numerical solution to the problems posed by the technique. For our culture, formed
on the model of infinitesimal analysis, the term “approximate” sounds like “imperfect.” However, we must not forget that
the objective of a numerical simulation of physical processes is the agreement with the experimental measurements and not the
convergence to an analytical solution, usually not attainable. In addition, the request of reducing the error of an approximate
solution does not mean make the error “arbitrarily small”, as required by the process of limit, but making the error smaller
than a preassigned tolerance.

The notion of precision of a measuring device plays the same role as the notion of tolerance in manufacturing and the
notion of error in numerical analysis. In conclusion we cannot deny ourselves the satisfaction of knowing the exact solution
of a physical problem in the rare cases in which it is available, what we question is the need to refer to an idealized exact
solution when this is not available in order to compare a numerical result with experiments.
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Global variables

Global variables

An alternative way to directly obtain a discrete system is to resort to
global variables, i.e. quantities associated to space entities.
Using global variables a straightforward formulation of the problem can
be obtained.1

P

L
S

V

Ṽ
S̃

L̃

P̃

1Strictly speaking, global variables are associated to space and time entities.Unstationary thermal conduction Application of the cell method to multiphysics analysis
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Global variables

Association to spatial elements: source variables

the heat source σ is associated to the volume Ṽ of the region where
it is located:

p =

∫
Ṽ

σdV

Through the energy balance equation, the heat source equals equals the
rate of change of the internal energy density U plus ∇ · ~q. Also these
quantities are associated to dual volumes:

internal energy:

u =

∫
Ṽ

UdV

heat flux:

Φ =

∮
S̃=∂Ṽ

~q · ~dS =

∫
Ṽ

∇ · ~qdV

?
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Global variables

Association to spatial elements: configuration variables

Temperature T describes the configuration of the system and is
associated to points

As a consequence the temperature difference is associated to the
edge connecting the two points

γ =

∫
L

∇T · ~dl
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Global variables

Association to spatial elements: Tonti diagram

P

L

S̃

ṼP

L

S̃

ṼT

�

�

u

p
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Topological equations

Topological equations

primal edge

Tj

Tk

�↵

dual volume

�↵

��

��

��

�✏

γα = +Tk − Tj
γ = GT

{G}ij ∈ {−1, 0 + 1}

+Φα + Φβ − Φγ − Φδ + Φε = pi − d
dtui

D̃Φ = p− d
dtu

{D̃}ij ∈ {−1, 0 + 1}
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Topological equations

Topological equations: Tonti diagram

P

L

S̃

ṼP

L

S̃

ṼT

� = GT

�

�

u

p

p = d
dt u + D̃�
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Constitutive equations

Temperature difference-heat flux

By using Whitney elements for interpolating
the temperature gradient

∇T (~r) =

6∑
i=1

~wEi (~r)γi

Φ′k =

∫
S̃′
k

~q · ~dS =

∫
S̃′
k

−λ∇T · ~dS =

∫
S̃′
k

σ

(
6∑
i=1

~wEi γi

)
· ~dS

= −
6∑
i=1

γi

∫
S̃′
k

λ~wEi · ~dS = −
6∑
i=1

m′λ,kiγi

Φ = −Mλγ
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Constitutive equations

Temperature-internal energy: nodal basis
The internal energy in each portion of the
jth dual volume that belongs to a
tetrahedron is given by:

u′j =

∫
Ṽj

U0dV+

∫
Ṽj

ρcTdV = u′0+

∫
Ṽj

ρcTdV

Temperature is then interpolated by means
of nodal shape functions

u′j = u′0+

∫
Ṽj

ρc

4∑
i=1

wNi TidV = u′0+

4∑
i=1

Ti

∫
Ṽj

ρcwNi dV

Neglecting the constant term u′0:

m′ρc,ji =

∫
Ṽj

ρcwNi dV

u = u0 + MρcTUnstationary thermal conduction Application of the cell method to multiphysics analysis
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Constitutive equations

Temperature-internal energy: pulse basis

The use of nodal functions gives rise to sparse matrices, with non-null off
diagonal elements
Idea: consider the temperature inside each dual volume as constant and
equal to the temperature of the corresponding primal node (piece-wise
constant interpolating functions):

m′ρc,ji =

∫
Ṽj

ρc pNi dV =


∫
Ṽj

ρcdV if i = j

0 if i 6= j

u = u0 + MρcT

the time integration method can be explicit

equivalent to mass lumping
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Constitutive equations

Constitutive equations: Tonti diagram

P

L

S̃

ṼP

L

S̃

ṼT

� = GT

�

� = �M��

�

u

p

p = d
dt u + D̃�

u = u0 + M⇢cT
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Constitutive equations

Algebraic (global) view

Conservation of energy law:

d

dt
u + D̃Φ = p

Fourier’s law:
Φ = −Mλγ

State equation:
u = u0 + MρcT

By substitution, considering that D̃ = −GT

Mρc
d

dt
T + GTMλGT = p

Ready to be solved!
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Constitutive equations

Algebraic (global) view
E. Tonti / Journal of Computational Physics 257 (2014) 1260–1290 1261

Fig. 1. (left) The tortuous path to obtain a numerical solution to a physical problem; (right) the direct procedure.

Since computers do not have the divine spark of intelligence, peculiar to human beings, they cannot conceive the notion
of limit and are therefore confined to use algebra, not the infinitesimal calculus. Hence, to apply the numerical methods
we are forced to return to a discrete formulation using one of the many methods of discretization, such as FEM, BEM, FVM,
FDM, etc.

If we explained this process to a person who is not familiar with physics, this person might ask: Why do we switch from
a discrete formulation derived from experimental measurements to a differential formulation and then go back to a discrete
formulation? Why do we follow this convoluted process? Why don’t we keep the discrete formulation from the outset? (See
Fig. 1.)

A direct discrete approach to physical laws is possible and easy to obtain: but we must change our habits of considering
the differential formulation as indispensable or simply privileged.

2. The mathematical description of physics

The peculiarity of the physical science, with respect to other sciences of nature, is that physical systems have many
quantitative attributes. These quantitative attributes are responsible for the introduction of physical quantities which allows
a quantitative description of the physical phenomena. It follows that the behavior of a phenomenon, i.e. its law, is described
by the relationship between the pertinent physical quantities, i.e. by an equation.

With physical quantities and equations, mathematics makes its majestic entrance into physics.
But we must never forget that each measurement process can be performed with a limited accuracy, and this compels us

to introduce the concept of tolerance of a measurement. Every measuring instrument belongs to a given class of precision.
In measurement an “infinite” precision, in the sense of a limit process of mathematics, is meaningless. The same positioning
of the measuring probe in a space region implies a tolerance. No measurement of a physical quantity is “exact”. The notion
of exactness is alien to the mind and to the practice of engineers and physicists!

2.1. Exact and approximate solutions

In our culture, trained by three centuries of differential formulation of physical laws, the differential formulation is so
familiar that we are led to think that it is the “natural” formulation for physics. Moreover we are convinced that only the
solution of a differential equation is the “exact” solution of a physical problem.

However, we know well that only in a few elementary cases, with regions of simple shape, with the most simple
boundary conditions and with particular distributions of sources in the region we can obtain a solution in a closed form, i.e.
an analytical solution. Hence the “exact” solution, that is promised by the differential formulation, is hardly ever attained
in practice. By contrast, the great technological progress of our days is made possible by the fact of being able to have an
approximate solution, in particular a numerical solution to the problems posed by the technique. For our culture, formed
on the model of infinitesimal analysis, the term “approximate” sounds like “imperfect.” However, we must not forget that
the objective of a numerical simulation of physical processes is the agreement with the experimental measurements and not the
convergence to an analytical solution, usually not attainable. In addition, the request of reducing the error of an approximate
solution does not mean make the error “arbitrarily small”, as required by the process of limit, but making the error smaller
than a preassigned tolerance.

The notion of precision of a measuring device plays the same role as the notion of tolerance in manufacturing and the
notion of error in numerical analysis. In conclusion we cannot deny ourselves the satisfaction of knowing the exact solution
of a physical problem in the rare cases in which it is available, what we question is the need to refer to an idealized exact
solution when this is not available in order to compare a numerical result with experiments.
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Constitutive equations

Cell method: recipe for practitioners

associate variables to primal/dual cell complex (Tonti diagram)

P

L

S̃

ṼP

L

S̃

Ṽ

� = rT

�

~q = ���

~q

� = @
@t U + r · ~q

�

UU = U0 + CTT
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Constitutive equations

Cell method: recipe for practitioners

convert point-wise quantities into global ones by integration

convert the differential operators into their algebraic counterparts

∇ → G, G̃

∇× → C, C̃

∇· → D, D̃

build the constitutive matrices

primal node - dual volume (e.g. thermal capacitance matrix)
primal edge - dual surface (e.g. thermal conductance matrix)
primal face - dual edge (e.g. reluctance matrix)
primal volume - dual node (???)
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Sources

Right hand side formation

If power density σ is assigned to a region, the power density must be
integrated with respect to the dual volumes:

pi =

∫
Ṽi

σdV ≈ σṼi

If the source S is concentrated
(pointwise), it is assigned to the
dual volume it belongs to

pi = S

Unstationary thermal conduction Application of the cell method to multiphysics analysis
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Boundary conditions

Dirichlet boundary conditions

Dirichlet boundary conditions have the form

T = TD on a portion of the boundary

Decompose the unknown vector in [T TD ]T:[
A11 A12

A21 AD

] [
T

TD

]
=

[
p

pD

]
.

The free unknowns can be obtained by solving the first block row:

A11T = p−A12TD

Unstationary thermal conduction Application of the cell method to multiphysics analysis
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Boundary conditions

Natural boundary conditions

The energy balance (steady state) on a boundary dual volume reads:

Φα + Φβ + Φγ + Φδ + Φbnd = pi

If Φbnd is not explicitly imposed, the natural condition is

Φbnd = 0→ adiabatic

�↵

��

��

��

�bnd

i�
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Boundary conditions

Neumann boundary conditions

If the (outward) flux density q0 through a portion of the boundary is
known, it is possible to assign an additional contribution to the rhs:

Φα + Φβ + Φγ + Φδ = pi − Φbnd

Φbnd = q0(S̃′i + S̃′′i )

�↵

��

��

��

�bnd

S̃0
i S̃00

i
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Boundary conditions

Robin boundary conditions

Convection boundary conditions are a special case of Robin boundary
conditions

au+ b
∂u

∂n
= g Robin b.c.

In fact
q0 = h(T − T0)→ hT − q0 = hT0

a = h; b = −1; g = hT0

In terms of global variables

Φbnd = h(S̃′i + S̃′′i )(T − T0)

Unstationary thermal conduction Application of the cell method to multiphysics analysis
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Boundary conditions

Robin boundary conditions

In matrix form
D̃Φ = −hS̃(T−T0)

hS̃ is a diagonal matrix that contributes to both the stiffness matrix and
the rhs

(GTMλG + hS̃)T = p + hS̃T0

Unstationary thermal conduction Application of the cell method to multiphysics analysis
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Exercise

Challenge: Formulate the magnetostatics problem with the cell method
in terms of magnetic vector potential:

solenoidality of the magnetic flux density

∇ · ~B = 0→ ~B = ∇× ~A

Ampere’s law
∇× ~H = ~J

constitutive equation
~H = ν ~B

Finally
∇× (ν∇× ~A) = ~J

Unstationary thermal conduction Application of the cell method to multiphysics analysis


	Laws of thermal conduction
	Differential view
	Cell method
	Global variables
	Topological equations
	Constitutive equations
	Sources
	Boundary conditions

	Magnetostatics

