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Laws of thermal conduction

Energy balance equation

The thermal energy production P in a region 1% during a time interval 7
is equal to the sum of the internal energy storage Au in V and the heat
Q@ that flows across the boundary of the region V' in the same interval 7.

P=Au+Q (in joule)

A distinctive feature of all balance laws is that they can be applied to
regions of whatever shape and extension and for whatever interval of
time.

Q
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Laws of thermal conduction

Energy balance equation: local formulation

By letting the volume V and the time interval T approach to zero

(infinitesimal)
/[adth:Au+/]{~q-det
TJV T JOV

o and ¢ integrable

m ¢ heat flux density (W m™2)
m o: heat source (Wm™3)

Applying the divergence theorem

//adth:Au+//v.q*dth
% %

divergence theorem
q differentiable
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Laws of thermal conduction

Energy balance equation: local formulation

Exploiting the arbitrariety of V'

/adt:AU—F/V-q*dt

U differentiable in space

m U: internal energy density (Jm~3)
Exploiting the arbitrariety of 7

oUu -

U differentiable in time
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Laws of thermal conduction

Internal Energy

The thermal energy production P in a region V during a time interval 7
is related to the temperature by the state equation

u=uo+ CT (in joule) (1)

m C: thermal capacity (JK™1)

If the volume approaches zero, the internal energy density becomes

U =Up+ pcT (2)

m p: volumetric mass density (kg m™3)
m c: specific heat (Jkg=! K1)
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Laws of thermal conduction

Fourier's law

The heat flux ® crossing a plane surface element Sis proportional to the
area S, to the temperature difference AT between two points which lie
on the normal to the plane surface element. Moreover it is inversely
proportional to the distance Ax between the two points and it has the
direction opposite to that of the temperature increase:

P
5 ar

by letting Ax approach zero:

i} dT
= A
dx

or, more generally:

g=—A\VT
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Differential view

Differential (local) view
Conservation of energy law:
- V. 7=
ot + g=o0

Fourier's law:
Gg=—-ANVT =-\g

State equation:
U =Uy+ pcT’

By substitution, one obtains the parabolic partial differential equation:

oT
— =V AT =
pcat V- AV o

to be discretized...

Unstationary thermal conduction Application of the cell method to multiphysics analysis



Outline ) thermal conduction Differential view Cell method

Differential (local) view

finite setting numerical
w E solution
Lo
% g algebraic
S a equations
" 1
1 1
: :
u spectral method
n n
u finite volumes ril
: . boundary elements
] TS
i
(] finite elements n
n | ]
] - - ¥ finite differences
" Ritz - Galerkin "
(1 [
.
a B .
CEEET SR dlffere_ntlal
equations
differential setting

Unstationary thermal conduction Application of the cell method to multiphysics analysis



Cell method

Global variables

Global variables

An alternative way to directly obtain a discrete system is to resort to
global variables, i.e. quantities associated to space entities.

Using global variables a straightforward formulation of the problem can
be obtained.?

SaIP X
D ] <> <
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Cell method

Global variables

Association to spatial elements: source variables

m the heat source o is associated to the volume V of the region where

it is located:
p= / odV
v

Through the energy balance equation, the heat source equals equals the
rate of change of the internal energy density U plus V - . Also these
quantities are associated to dual volumes:

uz/UdV
1%

m internal energy:

m heat flux:
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Cell method

Global variables

Association to spatial elements: configuration variables

m Temperature T describes the configuration of the system and is
associated to points

m As a consequence the temperature difference is associated to the
edge connecting the two points

'y:/VT~d_Z
L
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Cell method

Global variables

Association to spatial elements: Tonti diagram
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Cell method

Topological equations

Topological equations

primal edge dual volume
T,
Ve
T;
Yo = +T = T o + B — Dy — D5 + P = p; — Grus
— N d
v=GT D®=p-— j;u
{G}ij € {-1.0+1} (D} e {-1,0+1}
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Cell method

Topological equations

Topological equations: Tonti diagram
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Cell method

Constitutive equations

Temperature difference-heat flux

By using Whitney elements for interpolating
the temperature gradient

6
VI(F) = 3@ ()
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Cell method

Constitutive equations

Temperature-internal energy: nodal basis

The internal energy in each portion of the
jth dual volume that belongs to a
tetrahedron is given by:

o = / UodV + / peTdV = uly+ / peTdV
Vi

Vi Vi

Temperature is then interpolated by means

of nodal shape functions W

u;:ug—l—/ chw TdV—uO+ZT/ pewN dV

Neglecting the constant term wy:

m;&ji:/ pewNdV

Vi
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Cell method

Constitutive equations

Temperature-internal energy: pulse basis

The use of nodal functions gives rise to sparse matrices, with non-null off
diagonal elements

Idea: consider the temperature inside each dual volume as constant and
equal to the temperature of the corresponding primal node (piece-wise
constant interpolating functions):

pcdV  ifi=3j
Mipe ji :/~ pepy dV = /‘7J

Vi 0 if i #j
u=uy+ M, T

m the time integration method can be explicit

® equivalent to mass lumping
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Cell method

Constitutive equations

Constitutive equations: Tonti diagram
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Cell method

Constitutive equations

Algebraic (global) view
Conservation of energy law:

—u+D® =
dtu+ P

Fourier's law:
P = -M,vy

State equation:
u=ug+ M, T

By substitution, considering that D=-GT

d

MpciT + GTM,\GT =Pp

dt

Ready to be solved!
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Cell method

Constitutive equations

Cell method: recipe for practitioners

m associate variables to primal/dual cell complex (Tonti diagram)
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Cell method

Constitutive equations

Cell method: recipe for practitioners

m convert point-wise quantities into global ones by integration
m convert the differential operators into their algebraic counterparts

V-GG

Vx = C,C
V- —D,D

m build the constitutive matrices

m primal node - dual volume (e.g. thermal capacitance matrix)
m primal edge - dual surface (e.g. thermal conductance matrix)
m primal face - dual edge (e.g. reluctance matrix)

m primal volume - dual node (777)
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Cell method

Right hand side formation

If power density o is assigned to a region, the power density must be
integrated with respect to the dual volumes:

pi:/ odV =~ oV,
Vi

If the source S is concentrated
(pointwise), it is assigned to the
dual volume it belongs to

p; =S
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Cell method

Boundary conditions

Dirichlet boundary conditions

Dirichlet boundary conditions have the form
T =Tp on a portion of the boundary
Decompose the unknown vector in [T Tp |*:
Ay App T |_|p
Ay Ap Tp Pp |
The free unknowns can be obtained by solving the first block row:

A T=p—-A;Tp
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Cell method

Boundary conditions

Natural boundary conditions
The energy balance (steady state) on a boundary dual volume reads:
Oy + P+ Oy + D5 + Prna = pi
If ®pnq is not explicitly imposed, the natural condition is

g = 0 — adiabatic
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Cell method

Boundary conditions

Neumann boundary conditions

If the (outward) flux density go through a portion of the boundary is
known, it is possible to assign an additional contribution to the rhs:

o+ P+ O, + P5 =p; — Ppna

Dpna = qo( S} +5)

o Ppna
3 sy

e

a0
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Cell method

Boundary conditions

Robin boundary conditions

Convection boundary conditions are a special case of Robin boundary
conditions

au + b@ =g Robin b.c.
on

In fact
qO:h(TfTo) *)hquO:hTo

a=h; b=-1; g=~hT

In terms of global variables

Dpng = h(S) + S!)(T — Tp)
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Cell method

Boundary conditions

Robin boundary conditions

In matrix form _ ~
D® = —AS(T — Ty)

hS is a diagonal matrix that contributes to both the stiffness matrix and
the rhs _ _
(GTM,G + hS)T = p + hST,
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Magnetostatics

Exercise

Challenge: Formulate the magnetostatics problem with the cell method
in terms of magnetic vector potential:

m solenoidality of the magnetic flux density
V- B=0—5B=VxA

m Ampere's law
V x H

Il
<

m constitutive equation

]
I
N
o

Finally

—, -

V x vV x A) = J
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