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variables

Displacement

Definition
@ Considering an object in the space, each point of its
volume has a defined position with respect to the
reference
@ when a force acts, the position of each point can
change, due to two effects:
e rigid body motion, i.e. rototranslation in the space
e deformation of the body shape
@ displacement is defined as the difference in position of
the same point before and after force action

x' — x

u= |y -y (1)
zZ -z
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@ Two kinds of rigid motion can be highlighted:
e rigid translation

Y

Rigid Displacement

Figure: rigid translation
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Rigid Displacement

@ Two kinds of rigid motion can be highlighted:

@ rigid rotation
Y

Figure: rigid rotation
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@ Two kinds of deformation can be highlighted:
o dilatation

Y

Deformation

Figure: dilatation
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@ Two kinds of deformation can be highlighted:

o distortion
Yy

Deformation

Figure: distortion
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Mathematical relationship

@ considering all the previous effects, point P moves to P’ and in
the same way Q moves in Q'. The motion can be described by
two vectors dUp and dUq. So the initial segment U changes
in U’ and vectorially speaking

dUp

U

Figure: vector




Mathematical relationship

Forme @ due to the vectorial properties, the changed configuration can
the Linear be expressed as

Elastic
Problem

Chap. 1 dUp + U = dUq + U = dUg+ U + dh (2)

Configuration e Slmp“fylng
e dh = dUp — dUq )

that means the rigid translation is not relevant for body shape
modification that is due to rigid rotation and deformation
@ in matricial form:

ou ou  ou
dxp — dXq ox oy oz

dh=|dyp—dyg | =| % 9 % |dU=dJdU (4)
dzp — dzq gw gw gu
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g 1o 1 1 .7
s;?;g:rsation [J] - § [J] § [J] + E [J] + E [J] (5)

where the first two adding terms give the rotation matrix

0 l(@ _ 9v 1(8_11 _ 8_W)
Loou vy 2OY X 908z o
=1 205 —5) 0 2(5z —ay) | (6)
1(@ _ 8_W) 1(@ _ B_W) 0
2\ 0z ox 2\ 0z oy
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ou 1/90u ov 1/0u ow
Configuration 1,8 ox ) z(8_)/8_’_ W) ?(? + g_X)
. u |4 |4 14 w
variables [5] = z(a—y —+ m) ay §(E + B_y) =
Lol o gl 102l o G ow
2\ 9z ox 2\ 9z ay 0z

1 1
Exx 3Vxy 32Vxz
1 1
2y Ew 2 (8)
5Vxz 3Vyz €zz
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@ in vectorial form

Configuration ( Exx ) [ % o o ]
variables 0 0 0
> 0 0 2 y
c o
g = ZZ = b o 0z 4 = [(9] u (9)
2 9
Vxy Bg ox w
Vxz 3z 0 3@
0 2 O
\ Tyz ) L 9z oy J
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@ the diagonal terms (¢) means "dilatation"
Y

Deformation

Figure: dilatation

ou I'—1

X ox

u
/
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Deformation

@ the other terms (y) means "distorsion"

Y

du

S
|
)

Idv

Figure: distorsion

Y= T oy " ax

(11)
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Forces

@ Considering an infinitesimal volume, the equilibrium can be

written
H t, +dt,

i
= —
i P T, + di,

Figure: Surface and Volume forces in an infinitesimal volume, in
cyan the normal surface forces, and in red the volume forces
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Forces

@ all the surface contributions minus the volume force

@ That means the surface forces difference across the
volume is equal to zero if no volume forces are present.
In fact the force variation across the volume is equal to
the volume force contribution, as a consequence

[ a dif
dt, dfy
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@ Stress is defined as

at
lim — 14
Source S dS -’ ( )
variables

@ and due to the infinitesimal dimension of the area,

moment is d
m
Mo g5 = ° i
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Forces

Stress definition
@ stress can be divided into two types: normal and tangential.
The first is normal to the surface where it acts and it is usually
called o, the second is applied on the surface and acts along
one of the other two directions and it is usually called 7.
Y

z

Figure: Normal (red arrows) and shear (green arrows) stress




Forces

Forme @ considering expression 14 and figure 9, the force increment
the Hinear can be rewritten as
Problem
Chap. 1 . Ox Tyx Tzx
dt = | 7x | dydz + axdz + dxdy  (16)
Txz 7'yz Uz
— @ equation 12 can be exploded along Cartesian directions,
variables writing (for example along x)
(a"x dx)dydz+( oy -dy)drdlz-+( gf dz)dydx — dfdxdydz = 0

(17)

y
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Proboon @ Then, by reordering the equation 17 and the other
Chap. 1

along y and z, in vectorial form it is possible to write:

P
Source 6%( 0 0 % % 0 % th
variables 0 (% 0o 2 0 % 7‘_72 =|dy | =
L Tyz |
[0]" dt

(18)

y




Duality

Finite @ By observing equation 9 and equation 18, it is possible
Mo Linoar to note that the differential operator is the same, just
Elastic

Problem transposed. This is the first important element for the
cha. | analysis of elastic field.

@ The CM highlights this duality considering the
geometrical quantities where displacements and forces
are defined. In fact, displacements are defined related
to a point (eq. 1). The dual geometrical element of a

C. Rosso

Relationship

between point is a volume, and field forces are defined related to
source and

configuration a volume (eq 12)

variables

@ Difference of displacements is defined according to an
edge (the connection between two nodes, see eq. 4)
whereas the surface forces are related to an area (eq.
14). In CM the edge has an area as dual geometrical
entities.




Duality

Finite

Formulation of
the Linear e "
Elastic We need “sites” where quantities can be defined
Problem potentials,
Chap. 1 points . temperature,
. displacement etc.
voltages,
edges ¢ —0 temperature
differences etc.
dielectric and
faces thermal fluxes,
Relationship forces
between
source and volume density of
configuration charge, heat, force
volumes oto

variables

Figure: Geometrical quantities
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@ Considering the geometrical relationships between

elements, it is possible to highlight:

Primal mesh Dual mesh

-
o

configuration

Figure: Geometrical relationship: duality

821n0s

Duality




Duality

By @ The CM operators are integer, but they are deeply linked to
Forme the differential operators and the relationships between

the Linear differential and integer operators are the same

Problem Vertical links: topological equations (exact)
Chap. 1 Horizontal links: constitutive equations (interpolated)

C. Rosso

®

Relationship (o]

between
source and 2 D- _______________ G

configuration
variables D

oe@ oe@ o

Figure: Operator relationship: duality
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Topological equation: 2D example

Considering the plane triangle of the figure, it is possible to identify the
three nodes n1, n2, n3, the edges that connect the nodes e1, e2, and
e3. Each edge is related to a dual surface, in the figure indicated by L.
The triangle is plane and it has a constant thickness, so the dual
surface 2 is the product of the length L for the thickness §. The dual
volumes are defined by the dual surfaces and they are related to each
node.

n2

n3

n1




Configuration equation in CM

meﬂgﬁ)n o Eq. 4 can be rewritten in CM considering an edge and the
the Linear difference between the displacements of the two related nodes.
lastic Consider a plane element made by tree nodes.
roblem
Chap. 1
U1 10 -1 0 0 O Un
Vet 01 0 -1 0 O Vit
dup | |00 1 0 -1 0 Up2 (19)
dvee (|0 0O O 1 0 -1 V2
dUes 10 0 O -1 O Un3
dVes 01 0 0 0 -1 Vn3
Relationship
between
source and
configuration n2
variables
e3
el
n3
e2
n1




Source equation in CM

Finite Eq. 12 can be rewritten in CM considering the dual surface related
U 10 an edge (). Consider a plane element made by tree nodes, and
PElabSINC positive the surface force t that has outer orientation
roblem
Chap. 1

-1 0 0 0 -1 0 Li,

0 -1 0 0 0 -1 by,

i1 0 -1 0 0 O ti, | _

0o 1 0 -1 0 O L, ={f (20)

o o 1 0 1 0 Li

0o 0 0 1 0 1 .
Relationship b
between
source and
configuration n2
variables

e3
el
n3
e2

n1 )
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oroplern @ Referring to the duality expressed before, the egs. 19

and 20 can be simplified, writing:

h=Gu 21)
Ee{lationship —6[' - f (22)
Sonfigoraton @ and then, using the duality D = —G! source equilibrium

variables

becomes:
G't=f (23)




Constitutive equation

... between configuration and source spaces
Finite
Formulation of @ What said before is independent on the material of the

the Linear

o studied body. The relationship between the source and

Chap. 1 the configuration spaces has to be related to the

C. Rosso material.

@ In the linear elastic field, relationship between stress
and strain is defined by the material, and it is measured

by means of tensile test. In formula

E vE 0

Ox (1—2) (1=12) €x
_ vE E
oy ¢ = |5 oy O €y (24)
Constitutive Txy 0 0 2(175_” Yxy

equation

where E is the Young’s modulus of the material and v is
the Poisson ratio of the material, determined by means
of tensile tests.




Constitutive equation
... between configuration and source spaces

Finite @ In order to measure the Young modulus a tensile or

Formulation of compression test is performed using a testing machine.
Elastic | |
Problem
Chap. 1
_ columns
crosshead
— load cell
specimen Erips
Constitutive
equation .
base
G J
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@ The slope of the linear part of the curve is the Young

modulus
F
F !
m Failure
i
ol
‘F{'I[ ‘F{'L

Localized plastic del
Uniform plastic def.
Elastic def.

210 A (%)




Constitutive equation

Finite

R e @ Poisson coefficient is the shrinkage of the material
the Hinear measured in the orthogonal direction of tensile stress
Problem h
Chap. 1 ’T‘

Constitutive
equation

—

<>t
ve
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@ in formula, the expression of the transverse strain is:

H—nh
h

Ep = (25)
@ the relationship between transverse and longitudinal
strain is the Poisson ratio, defined as

y=_2t (26)
€l
@ The procedure to obtain v is quite the same used for E,
in fact, usually, when a strain gage is used for measure
the longitudinal strain, in the same time, another strain
gage measures the transverse strain
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S § @ But the source and the configuration equilibria are not
written with respect to respectively stress and strain.

@ As first step, stress has to be related to the force, this is
possible considering the discretization and the dual

surface, consider the three nodes plane element ...

tX = Uxéx + Txyéy (27)
ty = Tyxéx = O'yéy

Constitutive
equation
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the Linear @ and, writing (27) for each dual face inside a triangle, the
e relationship between surface force and stress can be
written as:
[ txl1 | [ z1)( NO §1y |
t,VZ1 0 L1y Lix
Li I, 0 L ox
XL2 — 6 2X . ~2y o (28)
tylg No Loy 52)( Txy
tXls L3X ,_,o é3y y
Constitutive L tyl3 . L 0 L3y L3X J

equation

where ¢ is the problem depth. In compact form:

t=Aoc (29)




Constitutive equation

Finite

Formulation of @ As second step, strain has to be related to the displacement
the Linear

e gradient, this is possible considering the discretization and the

gf:;eqﬂ primal edge, consider the three nodes plane element ...

dUe1
Ex Py O Po 0 0 O Zl‘jm
_ e2

g l=| 0 Py 0 Pp 8 8 v | ®0)

dues
d Ve3

Constitutive and in compact form
equation

¢ =Ph (31)




Topological equation: 3D example

L Considering the tetrahedral element of the figure, it is possible to

Formulation of
the Linear identify the four nodes n1, n2, n3, n4, the six edges that connect
Problem the nodes e1, e2, €3, e4 ,e5, and e6. Each edge is related to a
Chap. 1 dual surface.The dual volumes are defined by the dual surfaces

and they are related to each node.

Constitutive
equation




Configuration equation in CM

WG  Eq. 4 can be rewritten in CM considering an edge and the
et difference between the displacements of the two related nodes.
A Consider a 3D tetrahedral element made by four nodes.

hx1 U
hy1 v
hz1 Wi
hxa I; —l3 03 03 Us
hy2 I3 03 -l 05 Vo
hzo |3 03 03 _|3 Wo
hX3 n 03 |3 —|3 03 Uz (32)

Constitutive hy3 0; I3 0; I3 V3

equation th 03 03 |3 _ |3 ws
hx4 Uy
hy4 v

L hz4 ] i Wy |




Source equation in CM

SN 4 12 can be rewritten in CM considering the dual surface related
the Hinear to an edge (L). Consider a tetrahedral element made by four
gf:;éqﬂ nodes, and positive the surface force t that has outer orientation
tx1
ty1
tz1
tx2
Iz —lz —l3 03 03 O3 ty2
Ik 03 03 -3 —lI3 03 tro
0; I3 03 I3 03 -03 tx3 =1 (33)
- 0 03 I3 03 I3 I3 ty3
Const_ltunve t
equation z3
tx4
tya
L tZ4 .




Topological equation

Finite
Formulation of
the Linear

e @ Referring to the duality expressed before, the egs. 19
Chap. 1 and 20 can be simplified, writing:
h=Gzu (34)
—Dst=f (35)

@ and then, using the duality D3 = —Gg source
equilibrium becomes:

Constitutive

equation G;'t _ f (36)
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Chap. 1 gy [ (1—v)E } 0 €y
Oz _ (1=2v)(1+v) 343 Ez (37)
Txy 0 (151/)] Vxy
Txz s Yxz
L Tyz | L Yyz |

where E is the Young’s modulus of the material and v is the
Poisson ratio of the material, determined by means of
tensile tests.

Constitutive
equation
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: : : : : : Txz
t6X éXG 0 0 éys 0 é26 Tyz
t6y 0 éy6 0 éxs ézﬁ 0

L 62 L O 0 3,5 O éyG Ay |

where a are components of the area vectors of the portion of dual
Cemsiiuiii face contained inside a volume. In compact form:

equation

t=Aoc (39)

y
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@ As a second step, strain has to be related to the
displacement gradient. By considering a tetrahedral
element with four nodes and affine behaviour of the
displacement components u, v, w with respect to the
spatial coordinates, the displacement can be written as
a function of (x, y, z) as:

u(x,y,z) = Hux + Hyy + Hez + ¢y (40)
v(x,y,z) = Hxx + Hyy + Hy,z+ ¢y (41)
W()(,}/7 Z) = HzxX + Hyzy + szz + CW (42)




Constitutive equation

SN \yhere the H components are constant. Writing the relative
the Hinear displacements along x direction of the primal nodes one obtains:
Problem
cha- 1 Pyt = U1 — Up = Hix(X1 — X2) + Hyxy(y1 — ¥2) + Hxz(21 — 22)(43)
hyoe = uy — us = Huw(X1 — X3) + Hxy (V1 — y3) + Hxz(21 — 23)(44)
hys = Uy — Uy = Hux(X1 — Xa) + Hxy (Y1 — ¥a) + Hxz(21 — 24)(49)
hya = Up — U3 = —hyg + hyo (46)
hxs =Up— Ug = —hy1 + D3 (47)
hye =U3— U= —hyo+ he (48)
(49) |

Constitutive
equation
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Constitutive equation

and noting that the last three equations are linearly
dependent on the first three, the formulation can be
rewritten as:

hx1 ;1 X §1 y §1 z Hxx
hy2 = EZX éZy éZz ny
hys L3x L3 % L, Hyxz




Constitutive equation

Formulation of
the Linear

Elastic

A The matrix containing components of the edge vectors are
defined as: . . .
é1x é1y é1z
L= éZx éZy 522 (51)

L3X L3 y L32

In order to compute components H, matrix P’ can be
obtained as:

Px1 Px2 Px3

P=L"= Pyi Pyo Py (52)
Constitutive Pz1 P22 PZ3

equation
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By operating on the matrices written for each spatial
direction, and using the components of matrix P’, one

obtains:

Hyx ny Hzx
V= | iy By H (53)
Hy- Hyz H;
Px1 Px2 PxS hx1 hy1 hz1
HT = Py1 Py2 PyS hx2 hy2 h22 (54)
P z1 P z2 P z3 hx3 hy3 hz3 )
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Constitutive equation

@ Now it is possible to write the solution equation,
considering the Tonti’s diagram of the elastic problem

Figure: Tonti’s diagram of elastic problem
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Problem
Chap. 1

G'AEPGu = F,, (55)
and in compact form:
G'M,Gu = F,, (56)

@ considering the stiffness formulation of the elastic
problem, equation 56 can be expressed as:

Ku=Fe (57)

Constitutive

equation
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