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The increasing penetration of HVAC systems, the
introduction of RES and storage has changed the

fromework of building energy managing -
Energy Flexibility

Classic control strategies (i.e, ON/OFF or PID) are
inadequate to adapt to continually changing of
preferences of users, grid requirements and
disturbances - Adaptive control

Model-based control strategies (e.g, Model
Predictive Control (MPC)) were explored, showing
excellent ability in improving comfort conditions
and energy efficiency in buildings. However, their
application is limited since requires the definition
of an accurate model of the environment to be
controlled - Model-free and data-driven
control strategies
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Introduction — Problem Statement

Given their dato-driven nature, model-
free advanced control strategies based
on Artificial Intelligence performs well due
to their ability to adapt and to optimise
the operation of complex energy systems.

Furthermore, such control strategies can
handle multi-objective problems,
ensuring an optimal trade-off when
conflicting objectives are involved, such
as minimize energy consumption while
enhancing indoor comfort conditions in
buildings.

In this work it was designed an adaptive
and model-free strategy, based on Deep
Reinforcement Learning.
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Work contribution

> Application of an adaptive and model-free
control strategy (Reinforcement Learning) to
control and optimize the operation mode of the
HVAC system (chiller mode, TES
charge/discharge) to:

1. enhance building comfort condition;

2. reduce costs associated with electricity
withdrawn from grig;

3. reduce daily peak load demand.

» Performm an automated optimization process for
DRL hyperparameters using the Python library
Optuna.
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Methods: Reinforcement Learning

It is a learning technique that aims at realizing control
agents.

states;

RL agent is trained through trial-and-error interaction with

the environment to learn an optimal control policy w that
mMaximizes the objective function, called reward function.

Two functions are used to define the problem and show \ reward;,q
the expected return of the control policy: Environment/

» State-value function v, (s)

» Action-value function g, (s, a) k l

Usually, state-value and action-value functions are
approximated  with  neural networks >  Deep
Reinforcement Learning.

action
However, the performances of DRL algorithms relies

heavily on the choice of several features (ie,
hyperparameters), that require an optimization process
that is carried out through a trial-and-error process or in
automated way.

o %! ~, Politecnico
yA. " AY diTorino




Case study

The building under observation is located in Turin, ltaly, and it is divided into three heating zones with 10 workers
each plus an unconditioned technical room.

The thermal side of energy system and the building were modeled in EnergyPlus, and it was developed a
BCVTB to allow the interaction with the RBC/DRL controller developed in Python, where the controllers and PV
system (1.2 kW size) were developed. The simulation period was limited between June and August since it was
considered a cooling system.

The price of electrical energy drawn from the grid to operate the energy system is based on a Time-Of-Use
(TOU) tariff structure commonly implemented in Italy (low price 0,071 €/kWh, medium price 0,143 €/kWh, high
price 0,214 €/kwWh).
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Methodology

The methodological framework of this work is composed by three modules.

/ RL optimization \
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Rule-Based control
Design RBC

= Implementation of If-then
rules

= Tuning of threshold for
heating system
scheduling
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Design RL controller

» Define state space

= Define action space

= Define reward function

Automated hyperparameter
optimization
= Define objectives for Optuna

Train RL controller

K Update parameters 0;
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Performance analysis \

Build the Pareto front

*» Find hon-dominated solutions

= |dentification of optimal
solution

Performance assessment
+ Testing of RL controller
« Benchmarking of the RL

\ controller with RBC
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Hyperparameters optimization for advanced controller

DRL controllers are characterized by many hyperparameters which require
appropriate tuning, since they affect performances of these algorithms. P
Therefore, in this project, an optimization was carried out on some of the most

important DRL hyperparameters by using Optuna.

Optuna is an open-source Python library that automates the search of optimal hyperparameter
configuration in machine learning-based models. This library ensures efficient optimization of
hyperparameters by adopting state-of-the-art algorithms for hyperparameter sampling.

Optuna employs records of recommended parameter values and evaluated target values to restrict and
optimize the search space of the hyperparameters.

Within the sampling algorithms used in Optunag, in this work, it was chosen the Tree-structured Parzen
Estimator (TPE). TPE is based on an iterative process that employs the historical record of evaluated
hyperparameters and metrics obtained to create a probabilistic model, which is used to recommend the new
hyperparameter set.
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Hyperparameters optimization for advanced controller

Furthermore, Optuna requires as input the target function to be minimized or maximized as well as the

hyperparameter optimization range with the associated incremental step.

Since we are dealing with a multi-objective control problem, it will exist a set of optimal solutions, called
Pareto-optimal solutions, ensuring the trade-off between the chosen control objectives (i.e., temperature,
efficiency and peak shaving) = it was necessary to establish a criterion to choose the best solution among

the optimal ones.

Therefore, it was adopted the criterion of the minimum distance from the so-
called ideal point, i.e, the point whose coordinates correspond to the minimum
of both objective function terms. Then, it was computed the distance between
points corresponding to each Optuna solution and the ideal point, whose
coordinates are like [Econs, Tviol, Pdaily,peck].

« Econs represents the total energy consumption, calculated in MWh.

« Tviol stands as the total temperature violations, calculated in °C. The temperature violations
were calculated as the absolute difference between the indoor temperature and the lower
or upper limit of the temperature acceptability range [25, 27], when the indoor temperature
was lower or higher than these limits.

« Pdaily,peak represents the daily peak power, evaluated as the maximum of the hourly energy
withdrawn from the grid.
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Hyperparameters optimization for advanced controller

To better explain, this table reports the values of hyperparameters kept fixed as well as the range for those
optimized with Optuna.

DRL Hyperparameters Value
DNN architecture 2 layers
Episode length 90 days
Boltzmann temperature coefficient (a) 0.1
Discount factor [0.9,0.95, 0.99]
Learning rate [0.001,0.002, .., 0.005]
8 [0.01,0.015, 0.02, .., 0.05]
5 [0.5,1,15, .., 5]
0 [5,6,7,.,15]
Batch size 128
Neurons per hidden layer 256

Number of episodes 30
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The performances of DRL controller were compared with a baseline controller, made of two agents that decide
the operation mode (RBC-1) and if providing cooling energy to the building (RBC-2)

The RBC-1 operates the cooling system in different operation mode (chiller mode or charging/discharging
TES) depending on the electricity price (low/high) and TES temperature.

« TES was charged if the electricity price is low and until the SOC is max (=1)
« TES was discharged whenever it is supplied cooling energy to the building and if the TES SOC is not zero

« The thermal system operates in chiller mode whenever it is supplied cooling energy to the building and if the TES SOC is
zero

The RBC-2 control logic consists of two parts, a pre and post first switch ON phase, where the agent starts to
supply cooling energy to the building according to specific indoor temperature conditions and to the time of
the day. The energy supply is interrupted when occupants leave the building.
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Design of DRL Controller

For the source building, the goal of the designed controller is to optimize control of the indoor temperature
during the occupancy period while reducing the electricity bills (chiller + pump energy) and shaving the
energy peaks. The setpoint was set equal to 26 °C and the temperature acceptability ranges between 25 °C and

27 °C.

The action-space is discrete, and it includes 5 couple of action indicated as [system operation mode, cooling

fraction].
Time To
TES SOC (t, t-4, t-8) Occupancy Start Text [°C]
[ End [h]
The state-space is composed in this way
@ D
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The reward that the agent receives after having taken actions at each control time step depends on three
values, that are weighted introducing coefficients g, 6,6 :

> energy-related term (rg)

> peak-related term (rp)

> Temperature-related term (ry)

The energy-related term refers to the electricity withdrawn from the grid for the chiller and pump, considering
the electricity prices from TOU schedule

re = cp * (EcyirLer + Epump)

The peak-related term refers to the mean daily peak power withdrawn from the grid for the chiller and pump

rp = Pppak parLy

The temperature-related term has different expressions depending on the indoor temperature values,
computed or not as the difference between upper/threshold temperature and the temperature setpoint during
occupancy periods

rr = f(AT)
The general expression of the reward is

r=—@x*xrg+p*xrr+0x*rp)
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Results — Hyperparameters optimization

The 2D-Pareto fronts are reported below together with the optimal

solution

Optimized
Hyperparameters Velite
The optimal solution is a dominated solution in the Cost/Peak plane
Discount factor 0.99
Cost and peak are correlated since the electricity demand is the Learning rate 0.001
hlghetst.durlr)g occupied period, which occur during the highest . 005
electricity price
5 15
On the other hand, peak and comfort and cost and comfort are 0 5
contrasting objectives
The size of the bubbles is related to the third dimension
Pareto front Pareto front Pareto front
40 T 100 T 100 T
1 H O optimum | H (O oOptimum 1 H (O oOptimum
: | -—- Baseline : | --- Baseline : | --- Baseline
35 1 H — = Pareto front 90 - | H — = Pareto front 90 - 1 H — = Pareto front
] 1 1 1 1 1
i : l ! LN
30 4 1 1 80 1 1 1 80 1 1 g
I : [ : I :
g Lo o | o o i e
: 254 N w70+ 1 w70+
R N je e § b N
20 - é- : 60 é-l : 60 l o i
¥ " % °
15 4 -1"“"‘----" ---------- o 50 1 L'i‘ """""""""" 50 1 """'i """"""""""""
i i i
10 - . —L . . . . 40 . . —L . . : . 40 : —L . . . . .
4] 100 200 300 400 500 600 700 800 —100 4] 100 200 300 400 500 600 700 800 0 10 20 30 40 50 60 70
Comfort [°C] Comfort [°C] Peak [kW]

~y,  Politecnico

A di Torino
il

Department of Energy
“G.Ferraris”

80



Results — RBC Controller

The indoor temperature profile,
the storage SOC and the energy
consumption of the chiller [in
kwh] are reported in these
figures from RBC controller
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Results — DRL Controller

Legend
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The indoor temperature profile,
the storage SOC and the energy
consumption of the chiller [in
kwh] are reported in these
figures from DRL controller



« Minimizing contrasting objectives as the three considered in this work it is a complex task, since

increasing one objective could degrates the other - in this case, the DRL agent ensure a good
tradeoff In the minimization of electricity/peak costs and thermal discomfort

« DRL algorithm performances relies on the choice of an appropriate set of hyperparameters.
Employing an automated procedure that explores the space of hyperparameters could speed
up the controller implementation process in comparison to a manual approach:

1. in a pareto set (i.e, set of all configurations which exhibit conflict among objectives), Optuna
returns the information on the pareto front

2. using the criterion of the minimum distance from the ideal point, it is obtained the best
solution between nhon-dominated one

« The optimal solution may be improved by exploring more hyperparameters but at the cost of an
increased computational time
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