

Optimization methods for engineering problems

Topic

Surrogate modelling Radial Basis Function

Team 3

PhD students

Davide **Costigliola** S289458 – DIMEAS Salvatore **Esposito** S304066 – DET/DIMEAS Andrea **Forestieri** S303058 – DIMEAS Grazia **Piccirillo** S304058 – DIMEAS

26/05/2022

Contents

Introduction	
Case study	
Method	
Results	
Conclusions	

Introduction

- Surrogate models are typically used to accelerate complex engineering optimization processes [1-4].
- Some of the main applications in the aerospace engineering field are related to design optimization [5-7] and trajectory optimization [8-10].
- This presentation describes a <u>RBF method</u> to optimize orbit transfers in LEO, considering almost circular orbits and the influence of J2 perturbation.
- Multi-Quadrics (MQ) interpolating functions were selected to approximate the objective function and then the surrogate model was combined with the <u>Particle Swarm</u>
 Optimization (PSO) to gain an higher efficiency in the optimization process [11,12].

Introduction

Case study

A chaser satellite is carrying out a debris removal mission.

Current orbital states			
Height	i		
400 Km	51°		

The target orbit 's height is 600 km, where there's a debris cloud in a range of 6° around the current inclination, and 6° degrees around the current RAAN.

Method

Politecnico

di Torino

Goal Function: Transfert Time [A.U.] **DOF**: Δi , $\Delta \Omega$

Introduction Case study Method Results Conclusions

Method

Model adopted: Radial Basis Surrogate (RBS) Model

$$g(x) = \sum_{i=1} \phi(x) = \sum_{i=1} c_i \phi\left(\left|\left|x - x_j\right|\right|_2\right)$$

$$g(x) = \sum_{i=1}^{n} c_i \sqrt{||x - x_i||^2 + h}$$

Introduction

 $[c_i] = \left[X_{ij}\right]^{-1}[f_i]$

$$[X_{ij}] = \sqrt{||x_j - x_i||^2 + h}; \quad f_i = f(x_i); \quad i,j=1...N;$$

Case study

Method

Туре		${oldsymbol{\phi}}$
Thin plate	spline	$r^2\log(r)$
Cubic splir	ne	r^3
Gaussian s	pline	e^{-r^2}
Multiquad	lrics	$\sqrt{r^2 + h^2}$
Inverse		1
multiquad	rics	$\overline{\sqrt{r^2+h^2}}$
Linear		r
Power	r^k	$0 \le k \le 2$
Exponenti	al	e^{-r}
Rational	ĩ	$r^2(1+r^2)$
quadratic		
Multilog s	pline lo	$\log(r^2 + h^2)$
Results Conclusions		

N samples = 9

h = 1

All samples h = 0.1

Introduction Case study Method **Results** Conclusions

Introduction

Case study

Method Re

Results

Conclusions

Introduction

Case study Method **Results** Conclusions

Conclusions

Introduction

Conclusions

Results

- An algorithm to optimize orbit transfers in LEO was developed in Matlab, using RBF-MQ surrogate model coupled with PSO.
- The computational cost of the optimization analysis was reduced from $\cong 4 h$ to $\cong 1 min$.

Method

The best result was obtained for h = 1, discarding for each iteration the old samples.

Future applications might concern the optimization of time or fuel for multiphases transfers (e.g. missions to asteroids belts).

Case study

Worst case scenario

Global optimum

References

[1] Satria Palar, P., Liem Patricia, R., Rizki Zuhal, L., Shimovama, K. *On the use of surrogate models in engineering design optimization and exploration: the key issues.* Proceedings of the Genetic and Evolutionary Computation Conference Companion, Association for Computing Machinery, 1592-1602, Prague, Czech Republic, *2019*. <u>https://doi.org/10.1145/3319619.3326813</u>

[2] Whalen, E.J., *Enhancing surrogate models of engineering structures with graph-based and physics-informed learning.* MsC Thesis in Computational Science and Engineering, Massachusetts Institute of technology, 2021. https://hdl.handle.net/1721.1/139609

[3] Granacher, J., Kantor, I. D., & Maréchal, F. Increasing Superstructure Optimization Capacity Through Self-Learning Surrogate Models. Frontiers in Chemical Engineering, 3, 2021. https://doi.org/10.3389/fceng.2021.778876

[4] Zhu, W., Guo, L., Jia, Z., Tian, D., & Xiong, Y. *A Surrogate-Model-Based Approach for the Optimization of the Thermal Design Parameters of Space Telescopes*. Applied Sciences, 12(3), 1633, 2022. https://doi.org/10.3390/app12031633

[5] Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., & Tucker, P. K. *Surrogate-based analysis and optimization*. Progress in aerospace sciences, 41(1), 1-28, 2005. https://doi.org/10.1016/j.paerosci.2005.02.001

[6] Yolanda, M., Tushar, G., Wei, S., Raphael, H. *Surrogate Model-Based Optimization Framework: A Case Study in Aerospace Design.* Part of the Studies in Computational Intelligence book series (SCI,volume 51), 2007. <u>https://doi.org/10.1007/978-3-540-49774-5_14</u>

[7] Forrester, A. I., & Keane, A. J. *Recent advances in surrogate-based optimization*. Progress in aerospace sciences, 45(1-3), 50-79, 2009. https://doi.org/10.1016/j.paerosci.2008.11.001

[8] Rao, A.. A Survey of Numerical Methods for Optimal Control. Advances in the Astronautical Sciences, 2015. https://www.researchgate.net/publication/268042868

[9] Mirinejad, H. and Inanc, T. *A radial basis function method for direct trajectory optimization*. American Control Conference (ACC), pp. 4923-4928, 2015. https://doi.org/10.1109/ACC.2015.7172105

[10] Mirinejad, H., Inanc, T., and Zurada, J.M. *Radial Basis Function Interpolation and Galerkin Projection for Direct Trajectory Optimization and Costate Estimation*. IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 8, pp. 1380-1388, 2021. https://doi.org/10.1109/JAS.2021.1004081

[11] Rocha, H. On the selection of the most adequate radial basis function. Applied Mathematical Modelling, Volume 33, Issue 3, Pages 1573-1583, ISSN 0307-904X, 2009. https://doi.org/10.1016/j.apm.2008.02.008

[12] Alotto, P., Caiti, A., Molinari, G. and Repetto,, M. *A multiquadrics-based algorithm for the acceleration of simulated annealing optimization procedures*, IEEE Transactions on Magnetics, vol. 32, no. 3, pp. 1198-1201, *1996*. <u>https://doi.org/10.1109/20.497458</u>

Thanks for your attention!