

ANALYSIS AND EFFECTIVENESS EVALUATION IN SOLVING REAL-WORLD PROBLEMS

Department of Electronics and Telecommunications 01RGBRV Optimization methods for engineering problems Prof. M. Repetto

Antonio Calagna, Giuseppe Di Giacomo, Francesco Gabriele and Deborah Volpe

June 7, 2022

OUTLINE

1. Introduction

- 2. Optimal Placement of antennas in an array
- 3. Application to QUBO problems
- 4. Conclusions

PART I: Introduction

STOCHASTIC OPTIMIZATION ALGORITHMS

- Stochastic optimization has become the reference approach for engineering problems
- Most algorithms have been developed by implementing analogies with natural phenomena

EVOLUTIONARY ALGORITHMS

- Direct, parallel, stochastic methods for global search and optimization, which imitate the evolution of the living beings, i.e., reproduction, natural selection and diversity
- Based on the competition among individuals in the population

Population: a group of individuals, each one with its properties
Fitness: measure of the level of adaptation
Genetic outfit: heritage content
Genetic operators: outfit update by means of crossover and mutation

Selection: which individuals move to the next generation

EVOLUTIONARY ALGORITHMS

Binary Probabilistic Fixed Parallel

GA

Representation Selection Genetic Operators Algorithm Execution

- **Representation**: traditionally, individuals are defined as binary strings
 - Chromosomes: strings, candidate solutions
 - Genes: alphabets
 - Alleles: values of genes
- Mating pool: individuals that will take part to reproduction
 - Roulette Wheel: probabilistic selection

0101110

0111010

0101110

Cross-over: two parents mingle their genetic outfit

Exploitation

Mutation: random change to alleles

Exploration

- Initialization: the initial population is generated randomly
- **Evaluation**: the fitness values of the candidate solutions are evaluated
- Selection: survival-to-the-fittest mechanism is applied on the candidates
- **Recombination**: combine two or more parental solutions to generate offspring
- Mutation: local and random modification of a candidate
- **Replacement**: the offspring population replaces the original parental one

Q	1 into a binary s	vstem Q
Determ depend until a n	ine a genetic op ing on its probal ew generation is	beration bility <i>p</i> , s formed
p=p(C)	p=p(M)	p=p(R
Selection Recombi-	Selection	Repro
	Q	Q

Sastry, K., Goldberg, D., & Kendall, G. (2005). Genetic algorithms. In *Search methodologies* (pp. 97-125). Springer, Boston, MA.

- Genetic Operators:
 - Selection Operators:
 - Fitness Proportionate Selection
 - Ordinal Selection
 - Crossover Operators:
 - K-point Crossover
 - Uniform Crossover
 - Uniform Order-based Crossover
 - Order-based Crossover
 - Partially Matched Crossover
 - Cycle Crossover
 - Mutation Operators:
 - Bit-flip Mutation
 - Problem-specific strategies

• Replacement:

- Delete-all
- Steady-state
- Steady-state-no-duplicates
- Efficiency/Effectiveness Optimization:
 - Parallelization
 - Hybridization
 - Time continuation
 - Evaluation relaxation

Competent Genetic Algorithms:

Solve hard problems, quickly, reliably and accurately by automatically adapting problem, coding and operators

PART II: Optimal placement of antennas in an array

OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - I

Antenna Element Antenna

Array

OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - **II**

To study the array radiation phenomena, some approximations need to be done:

- □ Inter-element coupling in radiation is neglected.
- □ The observation point P is seen under a small (solid) angle. All observation directions are approximatively equal (*Far-field approximation*).
- □ Identical, equi-oriented and equipolarized radiating elements.

 $\underline{E}(r,\theta,\varphi) \approx \underline{E}_0(r,\theta,\varphi) A F(\theta,\varphi)$

$$AF(\theta, \varphi) \equiv \sum_{n} a_n \exp(jk\hat{r} \cdot \underline{r}_n) \quad a_n = \frac{I_n}{I_1}$$

Focusing on a **Linear 1D Array**:

OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - III

1D Equispaced Uniform Phased Arrays

û

n

2

ď

S

$$AF(\theta, \phi) = \sum_{n=1}^{N} I_n \exp(+jk\hat{r} \cdot \hat{u}d_n)$$
$$\hat{r} \cdot \hat{u} = \cos\alpha(\theta, \phi)$$

Uniform amplitude:

$$|I_n| = 1 \forall n, \quad I_n = \exp(j\Phi_n)$$

Uniform phase difference between neighboring elements:

$$\angle I_n - \angle I_{n-1} = const. = \Phi$$
$$I_n = \exp(j(n-1)\Phi)$$

□ The AF becomes:

$$AF(\theta,\phi) = \sum_{n=1}^{N} \exp[+j(n-1)\psi], \quad \psi \equiv kd(\hat{r}\cdot\hat{u}) + \Phi$$

O PTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - IV

1D Equispaced Uniform Phased Arrays

The AF is defined over the entire real axis, and it is periodic.

The variable ψ is limited to a finite interval in the visible range, defined as:

$$\psi^{visible} \in \left[-kd + \Phi, +kd + \Phi\right]$$

Everything at ψ locations outside visible range (e.g. zeros, lobes), is not present in radiation pattern!

Closed form design equations available (degrees of freedom are **N**, **d/λ** and **Φ**)

$$\psi = kd\hat{r} \cdot \hat{u} + \Phi = kd\cos\alpha + \Phi$$

 $F_N(\psi) = \frac{1}{N} \frac{\sin(N\frac{\psi}{2})}{\sin\frac{\psi}{2}}$

O PTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - V

	Side Lobes Level Amplitude	Beam Forming Network complexity
Uniform Amplitude	\mathbf{c}	<u></u>
Non-Uniform Amplitude	<u></u>	
Sparse Array	<u></u>	<u></u>

For sparse array, there is no (general) analytical design procedure.

Design based on global optimization

OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - VI

Application of Genetic Algorithm to the design of a sparse array

Goal = The minimization of the maximum SLL.

The N array elements are not *equispaced*, but *symmetrical* with respect to center.

Cost value: Maximum of the (normalized) AF out of the main beam, i.e., in the interval:

 $max\{AF(\alpha)\}, \ \alpha \in [0^{\circ}, \alpha_{z1}] \cup [\alpha_{z2}180^{\circ}]$

□ Independent variables: position of the N array elements.

$$\frac{d_n}{\lambda}$$
 as $\frac{d_n}{\lambda} = n \frac{d_{min}}{\lambda} + \frac{d_n^{GA}}{\lambda}$

OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - **VII**

Application of Genetic Algorithm to the design of a sparse array

OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - **VIII**

Application of Genetic Algorithm to the design of a sparse array

Population size (N_{population} = 50) is set, and the population individual are defined.

Each individual is composed of a set of $\frac{d_n^{GA}}{\lambda}$, which allows to determine the correspondent cost and fitness values.

- □ A fitness proportionate selection method is adopted, i.e., *roulette-wheel selection*.
- Each individual in the population is assigned a roulette wheel slot sized in proportion to its fitness.

□ *Spin* the wheel *n* times to select *n* individuals.

OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - **IX**

Application of Genetic Algorithm to the design of a sparse array

OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - **X**

Application of Genetic Algorithm to the design of a sparse array

OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - XI

Optimization problem - Results

OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - **XI**

Optimization problem - Results

□ Two-point crossover.

$$SLL_{red} = 3 dB$$

 \Box Number of array elements N = 9.

$$\Box \frac{d_{min}}{\lambda} = 0.65$$
$$\Box N_{Trial} = 50$$

OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - XI

Optimization problem - Results

No SLL^{red}! Uniform array coincide with the optimum.

PART III: Application to QUBO problems

QUBO FORMULATION

The acronym stands for **Quadratic Unconstrained Binary Optimization**:

- **Quadratic** refers on the highest power applied on variables
- **Unconstrained** means that no constraints are applied to a variable
- **Binary** because the involved variables can assume only 0 or 1 values
- **Optimization** because this model is used to minimize the obtained objective functions $y = x^t Q x$ Vector of binary variables QUBO matrix

Despite from the appearence, many types of constraints can be formulated with the **QUBO** model by introducing **quadratic penalties** to the objective function.

b01

b12

b02

a2

a1

BENCHMARK PROBLEMS CONSIDERED

SELECTION, CROSSOVER AND REPLACEMENT APPROACHES SUPPORTED

Selection:

- Roulette wheel selection
- Tournament selection

- Crossover:
- 1-point
- 2-point
- Uniform

Replacement:

• Delete-All

Politecnico di Torino

• Truncation selection

SOLUTION SPACE EXPLORATION – MAXCUT AND KNAPSACK

Maxcut 10 nodes: tournament selection (s=2), 2-point crossover, mutation (p_m =0.2), 4 elements in the population, 10 iterations **Knapsack** 10 variables: roulette wheel selection, uniform crossover ($p_c = 0.5$), mutation ($p_m = 0.2$), 4 elements in the population, 10 iterations

CUMULATIVE DISTRIBUTION: MAXCUT AND KNAPSACK

Maxcut 10 nodes: tournament selection (s=2), 2-point crossover, mutation (p_m =0.2), 4 element in the population, 10 iteration

Knapsack 10 variables: roulette wheel selection, uniform crossover ($p_c = 0.5$), mutation ($p_m = 0.2$), 4 element in the population, 10 iteration

SOLUTION SPACE EXPLORATION – NURSE SCHEDULING AND GARDEN

 $\times 10^4$

Nurse scheduling 5 days and 2 nurses: tournament selection (s=2), 2-point crossover, mutation $(p_m=0.2)$, 4 elements in the population, 10 iterations

Garden Optimization 16 variables: truncation selection (s=2), uniform crossover ($p_c = 0.7$), mutation ($p_m = 0.2$), 4 elements in the population, 20 iterations

CUMULATIVE DISTRIBUTION: NURSE SCHEDULING AND GARDEN

Nurse scheduling 5 days and 2 nurses: tournament Garden Optimization 16 variables: truncation

selection (s=2), 2-point crossover, mutation $(p_m=0.2)$, 4 element in the population, 10 iteration

selection (s=2), uniform crossover ($p_c = 0.7$), mutation ($p_m = 0.2$), 4 element in the population, 20 iteration

SCALING

TTS (time-to-solution) permits to estimate the number of iterations required for obtaining a success probability of 95%:

$$TTS(t_f) = t_f \frac{\ln(1-0.95)}{\ln(1-p_s(t_f))}$$
,
where p_s is the success
probability obtained by
executing t_f iterations of

the algorithm.

Advantage for a Quantum Annealer over Simulated Annealing, Tameem Albash and Daniel A. Lidar

Number of binary variables

PART IV: Conclusions and future perspectives

FUTURE PERSPECTIVES: QUANTUM-CLASSICAL GENETIC ALGORITHM

FUTURE PERSPECTIVES: REVERSE QUANTUM ANNEALING

The starting classical solution is obtained after crossover operator 000 001 010 011 100 By applying a field, a quantum superposition of states it obtained 000 001 010 011 100 By reducing the applied field, the system collapses in a new classical state, which is the new solution. This is

000 001 010 011 100

useful as it allows to escape from local minima, like mutation does.

PART V: Bibliography

BIBLIOGRAPHY

Ridwan et al. "Design of Non-Uniform Antenna Arrays Using Genetic Algorithm"

• Antenna arrays allow to obtain high directivity, narrow beamwidth and low side-lobes

• Goal: design a non-uniform array that approximates the beamwidth of a uniform array and having smaller side-lobe level than the Dolph-Chebyshev array

LITERATURE REVIEW

• GA is used to find the excitation amplitudes that allow to optimize the antenna array design

LITERATURE REVIEW

Lee et al. "Genetic algorithm using real parameters for array antenna design optimisation."

- GA is applied to optimize the design of a realistic antenna
- Continuous genetic algorithm: instead of using binary strings, individuals are represented by means of real parameters
 - No need to encode real parameters into binary values: more efficient code
 - In binary GA, precision is influenced by the number of bits used to encode parameters; with real numbers this issue does not occur
- Crossover: a crossover factor F is employed; its choice is very important, as it "determines how well the search space is being searched".
 - $C_1 = (1 F)P_1 + FP_2$
 - $C_2 = (1 F)P_2 + FP_1$
- In binary GA, lower probability of a high crossover point, thus significant bits are not changed. However, "with an appropriate value for F, the probability of crossover at more significant bits is increased. This results in a more rigorous search of the entire problem space"

BIBLIOGRAPHY

- Mutation
 - In binary GA: randomly flipping a bit
 - In continuous GA: randomly altering the value of parameters

$$P_i = P_i \pm F_{mut}R$$
 , with $R = P_{max} - P_{min}$

- Replacement: Elitism Roulette Wheel Algorithm, i.e. fittest top 10% individuals are selected for the new population directly; remaining 90% is chosen by using the roulette wheel algorithm
- Final plot:

BIBLIOGRAPHY

Leal et al. "Genetic Algorithm Optimization Applied to the Project of MIMO Systems"

- MIMO: Multiple Input Multiple Output, i.e., multiple antennas at transmitter and receiver
- Exploits multipath propagation
- Allows to have higher throughput and coverage area
- GA is used for optimization
- Goal: maximize throughput by varying the distance among antennas

Thank you for your attention!

ANALYSIS AND EFFECTIVENESS EVALUATION IN SOLVING REAL-WORLD PROBLEMS

Department of Electronics and Telecommunications 01RGBRV Optimization methods for engineering problems Prof. M. Repetto

Antonio Calagna, Giuseppe Di Giacomo, Francesco Gabriele and Deborah Volpe

June 7, 2022

