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PART I: Introduction



STOCHASTIC OPTIMIZATION ALGORITHMS

• Stochastic optimization has become the reference approach for engineering problems

• Most algorithms have been developed by implementing analogies with natural phenomena

ES GA PSO ACO AIS

[1] Icons provided by: Jackob Vogel, Debruder studio, Waleed Egalamy, Orin Zuu, Adrien Coquet at thenounproject.com

Competition Cooperation Diversity



EVOLUTIONARY ALGORITHMS

• Direct, parallel, stochastic methods for global search and optimization, which imitate the 
evolution of the living beings, i.e., reproduction, natural selection and diversity

• Based on the competition among individuals in the population

ES GA

Population: a group of individuals, each one with its properties
Fitness: measure of the level of adaptation
Genetic outfit: heritage content
Genetic operators: outfit update by means of crossover and 
mutation
Selection: which individuals move to the next generation



EVOLUTIONARY ALGORITHMS

ES GA
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GENETIC ALGORITHM

[2] Icons provided by Federico Panzano, Med Marki, Kamin Ginkaew, Joe Harrison, Debruder studio at thenounproject.com

• Representation: traditionally, individuals are defined as binary strings
• Chromosomes: strings, candidate solutions
• Genes: alphabets
• Alleles: values of genes

• Mating pool: individuals that will take part to reproduction
• Roulette Wheel: probabilistic selection

Cross-over: two parents mingle their genetic outfit Mutation: random change to alleles

Exploitation Exploration



GENETIC ALGORITHM

• Initialization: the initial population is generated randomly

• Evaluation: the fitness values of the candidate solutions are evaluated

• Selection: survival-to-the-fittest mechanism is applied on the candidates

• Recombination: combine two or more parental solutions to generate offspring

• Mutation: local and random modification of a candidate

• Replacement: the offspring population replaces the original parental one



GENETIC ALGORITHM Sastry, K., Goldberg, D., & Kendall, G. (2005). Genetic algorithms. In Search 
methodologies (pp. 97-125). Springer, Boston, MA.

• Genetic Operators:
• Selection Operators:

• Fitness Proportionate Selection
• Ordinal Selection

• Replacement:
• Delete-all
• Steady-state
• Steady-state-no-duplicates

• Competent Genetic Algorithms:
Solve hard problems, quickly, reliably and 
accurately by automatically adapting 
problem, coding and operators

• Efficiency/Effectiveness Optimization:
• Parallelization
• Hybridization
• Time continuation
• Evaluation relaxation

• Crossover Operators:
• K-point Crossover
• Uniform Crossover
• Uniform Order-based Crossover
• Order-based Crossover
• Partially Matched Crossover
• Cycle Crossover

• Mutation Operators:
• Bit-flip Mutation
• Problem-specific strategies



PART II: Optimal placement of antennas in an array



OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - I

Antenna 
Element

Antenna 

Array



OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - II

Focusing on a Linear 1D Array:

To study the array radiation phenomena, some approximations need to be done:

❑ Inter-element coupling in radiation is neglected.

❑ The observation point P is seen under a small (solid) angle. All observation directions are 
approximatively equal (Far-field approximation).

❑ Identical, equi-oriented and equipolarized radiating elements.



OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - III

1D Equispaced Uniform Phased Arrays 

❑ Uniform amplitude:

❑ Uniform phase difference between neighboring elements:

❑ The AF becomes:



OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - IV

1D Equispaced Uniform Phased Arrays 

The AF is defined over the entire real axis, and it is 
periodic. 

The variable ψ is limited to a finite interval in the visible
range, defined as:  

Everything at ψ locations outside visible range (e.g.

zeros, lobes), is not present in radiation pattern!

Closed form design 
equations available 

(degrees of freedom are N, 
d/λ and Φ)



OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - V

Side Lobes Level 
Amplitude

Beam Forming Network 
complexity

Uniform Amplitude

Non-Uniform Amplitude

Sparse Array

For sparse array, there is no (general) analytical design procedure.

Design based on global optimization



OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - VI
Application of Genetic Algorithm to the design of a sparse array

The N array elements are not equispaced, 
but symmetrical with respect to center.

Goal = The minimization of the maximum SLL.

❑ Cost value: Maximum of the (normalized) AF 
out of the main beam, i.e., in the interval:

❑ Independent variables: position of the N array 
elements.



OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - VII
Application of Genetic Algorithm to the design of a sparse array

Initialization and
Fitness Evaluation

Selection Recombination

MutationReplacement and 
Fitness Evaluation



❑ Population size (Npopulation = 50) is set, and the population individual are 
defined. 

Each individual is composed of a set of          , which allows to determine the  

correspondent cost and fitness values.

OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - VIII
Application of Genetic Algorithm to the design of a sparse array

Initialization and
Fitness Evaluation

Selection
❑ A fitness proportionate selection method is 

adopted, i.e., roulette-wheel selection. 

❑ Each individual in the population is assigned 
a roulette wheel slot sized in proportion to its 
fitness.

❑ Spin the wheel n times to select n individuals.



OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - IX
Application of Genetic Algorithm to the design of a sparse array

Recombination

Mutation

❑ The selected individuals from the mating pool are recombined to 
create new, hopefully better, offspring. This is done considering a 
certain crossover probability (Pcross = 0.5).

The exploited approaches to recombine individuals are:

❑ Depending on the mutation probability (equal to Pmutation = 0.1), the 
chromosome’s elements are randomly changed.



OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - X
Application of Genetic Algorithm to the design of a sparse array

Replacement and 
Fitness Evaluation

❑ The new offspring solutions are introduced into the parental 
population. This has been performed with a delete-all technique, 
where all the old population individuals is drastically replaced with 
the same number of individuals that have just been created.

Selection Get the best result 
achieved!



OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - XI
Optimization problem - Results

❑ Number of array elements N = 9.

❑ = 0.6

❑ NTrial = 50

❑ One-point crossover. ❑ Two-point crossover.

SLLred = 4 dB SLLred = 4 dB



OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - XI
Optimization problem - Results

❑ Number of array elements N = 9.

❑ = 0.65

❑ NTrial = 50

❑ One-point crossover. ❑ Two-point crossover.

SLLred = 2.5 dB SLLred = 3 dB



OPTIMAL PLACEMENT OF ANTENNAS IN AN ARRAY - XI
Optimization problem - Results

❑ Number of array elements N = 9.

❑ = 1 – 1/N

❑ NTrial = 50

❑ One-point crossover. ❑ Two-point crossover.

No SLLred ! 
Uniform array coincide with the optimum.



PART III: Application to QUBO problems



QUBO FORMULATION

The acronym stands for Quadratic Unconstrained Binary Optimization:

• Quadratic refers on the highest power applied on variables

• Unconstrained means that no constraints are applied to a variable

• Binary because the involved variables can assume only 0 or 1 values

• Optimization because this model is used to minimize the obtained objective functions
𝒚 = 𝒙𝒕𝑸𝒙

Despite from the appearence, many types of constraints can be formulated with 
the QUBO model by introducing quadratic penalties to the objective function.

Vector of binary variables
QUBO matrix



BENCHMARK PROBLEMS CONSIDERED

Maxcut

Nurse 
scheduling

Knapsack

Garden 
optimization

Cost function shapes different from each other



SELECTION, CROSSOVER AND REPLACEMENT APPROACHES SUPPORTED

Selection:

• Roulette wheel selection

• Tournament selection

• Truncation selection

Crossover:

• 1-point

• 2-point

• Uniform

Replacement:

• Delete-All



SOLUTION SPACE EXPLORATION – MAXCUT AND KNAPSACK

Maxcut 10 nodes: tournament selection (s=2), 
2-point crossover,  mutation (𝑝𝑚=0.2), 4 
elements in the population, 10 iterations

Knapsack 10 variables:  roulette wheel selection, 
uniform crossover (𝑝𝑐 = 0.5),  mutation (𝑝𝑚=0.2), 4 
elements in the population, 10 iterations



CUMULATIVE DISTRIBUTION: MAXCUT AND KNAPSACK

Maxcut 10 nodes: tournament selection (s=2), 
2-point crossover,  mutation (𝑝𝑚=0.2), 4 
element in the population, 10 iteration

Knapsack 10 variables:  roulette wheel
selection, uniform crossover (𝑝𝑐 = 0.5),  
mutation (𝑝𝑚=0.2), 4 element in the 
population, 10 iteration

Lower energy solution

Higher
probability



SOLUTION SPACE EXPLORATION – NURSE SCHEDULING AND GARDEN

Nurse scheduling 5 days and 2 nurses: tournament
selection (s=2), 2-point crossover,  mutation
(𝑝𝑚=0.2), 4 elements in the population, 10 iterations

Garden Optimization 16 variables: truncation
selection (s=2), uniform crossover (𝑝𝑐 = 0.7),  
mutation (𝑝𝑚=0.2), 4 elements in the 
population, 20 iterations



CUMULATIVE DISTRIBUTION: NURSE SCHEDULING AND GARDEN

Nurse scheduling 5 days and 2 nurses: tournament
selection (s=2), 2-point crossover,  mutation
(𝑝𝑚=0.2), 4 element in the population, 10 iteration

Garden Optimization 16 variables: truncation
selection (s=2), uniform crossover (𝑝𝑐 = 0.7),  
mutation (𝑝𝑚=0.2), 4 element in the 
population, 20 iteration



SCALING

TTS (time-to-solution) 
permits to estimate the 
number of iterations
required for obtaining a 
success probability of 
95%:

𝑇𝑇𝑆 𝑡𝑓 = 𝑡𝑓
ln(1−0.95)

ln(1−𝑝𝑠 𝑡𝑓 )
,

where 𝑝𝑠 is the success 
probability obtained by 
executing 𝑡𝑓 iterations of 

the algorithm.

Demostration of a Scaling 
Advantage for a Quantum 
Annealer over Simulated
Annealing, Tameem Albash

and Daniel A. Lidar

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.031016


PART IV: Conclusions and future perspectives



FUTURE PERSPECTIVES: QUANTUM-CLASSICAL GENETIC ALGORITHM

Quantum-Assisted genetic 
algorithm, King J. and Mohseni
M. and Bernoudy W. and 
Fréchette A. and Sadeghi H. and 
Isakov S. V. and Neven H. and 
Amin M. H. 

Simulation of implementable 
quantum-assisted genetic 
algorithm, Jirayu Supasil and 
Poramet Pathumsoot and Sujin
Suwanna. 

https://arxiv.org/abs/1907.00707
https://iopscience.iop.org/article/10.1088/1742-6596/1719/1/012102


FUTURE PERSPECTIVES: REVERSE QUANTUM ANNEALING

The starting classical solution is obtained after crossover

operator

By applying a field, a quantum superposition of states it

obtained

By reducing the applied field, the system collapses in a

new classical state, which is the new solution. This is

useful as it allows to escape from local minima, like

mutation does.



PART V: Bibliography
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Ridwan et al. "Design of Non-Uniform Antenna Arrays Using Genetic Algorithm"

• Antenna arrays allow to obtain high directivity, narrow beamwidth and low side-lobes

• Goal: design a non-uniform array that approximates the beamwidth of a uniform array and having 
smaller side-lobe level than the Dolph-Chebyshev array

Uniform antenna 

array

Non-uniform antenna 
array (e.g. binomial, Dolph-Chebyshev)

Uniform inter-element spacing

Uniform Amplitude

• Uniform array
• Dolph-Chebyshev
• Binomial arrays

beamwidth directivity side-lobes



LITERATURE REVIEW

• GA is used to find the excitation amplitudes that allow to optimize the antenna
array design



LITERATURE REVIEW

Lee et al. "Genetic algorithm using real parameters for array antenna design
optimisation."

• GA is applied to optimize the design of a realistic antenna

• Continuous genetic algorithm: instead of using binary strings, individuals are
represented by means of real parameters
• No need to encode real parameters into binary values: more efficient code
• In binary GA, precision is influenced by the number of bits used to encode parameters; with

real numbers this issue does not occur

• Crossover: a crossover factor F is employed; its choice is very important, as it
"determines how well the search space is being searched".

• 𝐶1 = 1 − 𝐹 𝑃1 + 𝐹𝑃2
• 𝐶2 = 1 − 𝐹 𝑃2 + 𝐹𝑃1

• In binary GA, lower probability of a high crossover point, thus significant bits are not
changed. However, “with an appropriate value for F, the probability of crossover at more
significant bits is increased. This results in a more rigorous search of the entire problem
space”



BIBLIOGRAPHY

• Mutation
• In binary GA: randomly flipping a bit

• In continuous GA: randomly altering the value of parameters 
• 𝑃𝑖 = 𝑃𝑖 ± 𝐹𝑚𝑢𝑡𝑅 , with R = 𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛

• Replacement: Elitism Roulette Wheel Algorithm, i.e. fittest top 10% individuals are
selected for the new population directly; remaining 90% is chosen by using the
roulette wheel algorithm

• Final plot:



BIBLIOGRAPHY

Leal et al. "Genetic Algorithm Optimization Applied to the Project of MIMO Systems"

• MIMO: Multiple Input Multiple Output, i.e., multiple antennas at transmitter and receiver

• Exploits multipath propagation 

• Allows to have higher throughput and coverage area

• GA is used for optimization

• Goal: maximize throughput by varying the distance among antennas

Without optimization With optimization



Thank you for your attention!
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