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Who are we? 

PhD students in Electrical, Electronics, and Communications 
Engineering and Control and Computer Engineering
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Problem Summary

• Current solutions (Ground Station Networks and Data Relay 

Systems) suffer from high data latency AND/OR limited 

capacity

• Services for sea, air, land. Why not space?

Is the satellite visible? 

Channel is usually Line-of-Sight (LOS):

• High propagation losses

• Minimum elevation angle 𝜃𝑒 ≥ 𝜃𝑚𝑖𝑛

• Antenna beamwidth, gain, steering capabilities 
(beamforming/steering/switching)

Providing space-based broadband low-latency services to low-Earth orbit space users
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Geometry of the Visibility Problem
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Moving to the Antenna…
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Space Antenna Requirements in a Nutshell

1. Circular Polarisation (Axial Ratio < 3-dB)

2. 8-dBi @ 10 W in uplink (14.0-14.5 GHz)

3. 3-dBi in downlink (10.7-12.7 GHz)

4. Half-power beamwidth (HPBW) >= 100-deg

5. S11 < -10 dB

6. Competitive size, weight, and power
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Single-beam or Multi-beam

Active, passive, or hybrid

Aperture, patch, or wire

Single element or array

= low-cost, small footprint (~10 cm),
lightweight (~100-500 g) solution
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Today: Antenna Element Kriging Optimisation

Antenna element is the basis of the array

• Probe-fed Truncated Stacked Patch 

• Driven-patch (RO3003) + Parasitic Patch (TLY5)

• Single Goal: Realised Gain >= 6-dB

• Condenses redundant objectives (S11, AR)

• Five parameters to optimise:

• Two Substrate Heights (coupling, inter-patch distance) 
([0.127, 1.5] mm)

• Two Patch Sizes ([5.0, 7.0] mm)

• Probe Position ([-1.0, -2.0] mm)

✓Acceptable simulation time per iteration (minutes) for 
a proof-of-concept optimiser
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What is Kriging?
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Kriging

• Starting from known points, a new point 𝑦𝑛𝑒𝑤 is 
estimated as the linear weighed combination using 
surrounding values. 
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• To determine the weighing coefficients 𝜔𝑖 , we can 
use a variogram

• Interpolation technique widely applied in spatial 
analysis.

Dataset for Kriging.

Optimization methods for 

engineering problems (01RGBRV)



Kriging - Variogram

A variogram shows the dissimilarity of data point pairs based on their spatial distance.
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- Measure of dissimilarity:

There are various parametric 

variogram models:

• Nugget-effect

• Bounded linear

• Spherical

• Exponential

• Gaussian

• Matérn Class

𝛾 𝒙𝒊, 𝒙𝒋 =
1

2
(𝒚𝒊 − 𝒚𝒋)

2
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sill

range

Variogram and fitted parametric model
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Kriging – Optimal Weight Calculation 
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How to compute 𝜔𝑖? Many ways (simple, ordinary, universal)...

Ordinary Kriging: directly combines coefficient calculation and unbiasedness condition
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Also provides variance of estimation: 𝝈𝟐 = λ +෍
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Kriging Algorithm: Two Input Scalar Function Example
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Provide initial 

dataset

Plot variogram

Fit parametric variogram model

Define points of interest (grid)

Run Kriging calculation 

for each point

Define spatial distance

Evaluate estimation Kriging can be extended to multiple input scalar functions 

by properly defining the spatial distance. 

Kriging Interpolation of 2-Input Objective Function.
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Kriging Algorithm: Antenna Element with 5 Input Variables
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Provide initial 

dataset

Plot variogram

End

Fit parametric variogram model

Define points of interest (grid)

Run Kriging calculation 

for each point

Define spatial distance

Evaluate estimation

Initial Training Dataset

two substrate heights (c) ([0.5, 1.5] mm)

two patch sizes

(top [5.0, 7.0] mm), bottom [6.0, 7.0] mm)

probe position ([-1.0, -2.0] mm)

Eval.: N=2 --> t=6min, N=3 --> t=1h 45min

P=5 --> t=4s (1s)

P=11 --> t=2min 30s (16s)

P=21 --> t=58min (380s)

Results is PxPxPxPxP array.

Finding maximum is straightforward.

Local surrogate optimization can be applied.

Optimization methods for 

engineering problems (01RGBRV)



Kriging Surrogate Optimisation
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Kriging Surrogate Optimisation

Core principle: reduce / simplify the number of costly objective function evaluations

How? By approximating it by a surrogate function, simpler and cheaper, using Kriging

Trade-off: efficiency x accuracy
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Let’s look under the hood!
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Gaussian Process Regression (Kriging Model)

Model: 𝑦 𝑿 = 𝛽 + 𝑍(𝑿) , 𝑍 𝑿 ~ 𝑵 𝟎, 𝚺 , 𝚺 = Cov Z 𝑿𝑖 , Z 𝑿𝑗 = 𝝈𝟐𝑹(𝑿𝑖, 𝑿𝑗)

Where: 

• 𝛽 is a constant term

• 𝑦 𝑿 is the exact fitness function (EFF)

• Z 𝑿 is a zero-mean Gaussian stochastic process

• 𝝈𝟐 is the process variance

• 𝑿 is the training data-set

• 𝑹(𝑿𝑖 , 𝑿𝑗) = ς𝑘=1
𝑛 exp(−𝜃𝑘 𝑿𝑘

𝑖 − 𝑿𝑘
𝑗 𝑝𝑘

) is a Gaussian Kernel, with

• 𝑝𝑘 = 2 (typ.) (Euclidean distance)

• 𝜃𝑘 is a hyperparameter
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Then, for any new point 𝑿∗ ⊈ 𝑿:

ො𝑦 𝑿∗ = መ𝛽 + 𝒓(𝑿∗)𝑇𝑹−1(𝒚 − 𝟏 መ𝛽)

Where:

r(𝑿∗) is the correlation vector between the new point and those of the training data set

ො𝑦 𝑿∗ is the global fitness function (GFF)

Global Surrogate Model (GSM)
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Hierarchical Surrogate-Assisted Evolutionary Optimization 
(HSAEO)

1. Construct a global Kriging model using available data points. 
Set global fitness function (GFF) equal to global surrogate 
model (GSM).

2. While iterations < limit:

a) Evaluate all individuals using GFF

b) For each top-ranking 𝜎-% individuals in population (hierarchy)

i. Apply solver to individual by interleaving local SM and exact FF 
(EFF) by Kriging

ii. Update database with new points and exact FF

iii. Replace individuals with locally improved solution (Evolutionary)

c) Evolve new population (Evolutionary, Genetic Algorithms)

d) If GFF = EFF (Test)

i. Update database with new designs

ii. Update GSM using new database

e) If there is no improvement over ∆ generations, that is, 
Convergence (Con), set GFF = EFF. Else, GFF = GSM. 

f) End. 18

Construct

Limit

(a) 

Evaluate
(b) Solve

(c) Evolve

(d) 

Update

End

(e) Set 

function

Con

Test
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What are Genetic Algorithms?

Genetic algorithms: starts from a set of solutions (called a population) and, by applying a set of operators 
(cross-over/sharing, mutation), a new population is iteratively generated and evaluated. 

- Advantages:

- Simple

- Applicable to a wide range of optimization problems

- Good solutions that are harder to find through other methods

- Drawback: require a large number of function evaluations, which is costly when the population size is 
large or the function is expensive to compute

Solution: by using a surrogate function, we can more efficiently search the solution space, improving 
performance (in quality and speed)

19

Optimization methods for 

engineering problems (01RGBRV)



How to evolve population?

Evolutionary Strategy (deterministic) or Genetic Algorithm (probabilistic)? Hybrid solution

➢ Selection-based Lamarckian-learning

Only top-ranking 𝜎-% individuals evolve in intermediate generation (short-lived offspring, refinement)

➢ Genetic Algorithm for New Generation

We employ a Gaussian Regression Process to compute the surrogate function, and update our surrogate
as we find more suitable candidates for the best point.

Since this is a stochastic model, we can look at the standard deviation of our surrogate function. By 
varying its weight, we can trade-off exploration and exploitation
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GPE Evaluation

• Starting points are randomly chosen within the bounds and evaluated against the TFF to create the 
surrogate model, GP kernel: constant + RBF

• Top 50% of population reproduce using crossover

• Best points are evaluated against the TFF and GP is updated

Simple example: 10-to-17 function evaluations of a 1D function
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Kriging Interpolation Results
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Parameter Optimal Value

𝐿𝑝𝑎𝑡𝑐ℎ (𝑏𝑜𝑡𝑡𝑜𝑚) 6.0 mm

𝐿𝑝𝑎𝑡𝑐ℎ (𝑡𝑜𝑝) 5.2 mm

ℎ𝑠𝑢𝑏 (𝑏𝑜𝑡𝑡𝑜𝑚) 0.5 mm

ℎ𝑠𝑢𝑏 (𝑡𝑜𝑝) 1.4 mm

𝑥𝑓𝑒𝑒𝑑 1.5 mm

𝐺𝑚𝑎𝑥 6.4 dBi

Starting Candidate

Optimal Solution
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Full Optimisation Results
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Parameter Optimal Value

𝐿𝑝𝑎𝑡𝑐ℎ (𝑏𝑜𝑡𝑡𝑜𝑚) 5.46 mm

𝐿𝑝𝑎𝑡𝑐ℎ (𝑡𝑜𝑝) 5.81 mm

ℎ𝑠𝑢𝑏 (𝑏𝑜𝑡𝑡𝑜𝑚) 0.65 mm

ℎ𝑠𝑢𝑏 (𝑡𝑜𝑝) 0.80 mm

𝑥𝑓𝑒𝑒𝑑 1.34 mm

𝐺𝑚𝑎𝑥 7.35 dBi

1st Kriging Candidate

Optimal Solution
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Conclusion

We:

• Modelled a stacked-patch antenna element

• Implemented a proof-of-concept Kriging optimiser

• Defined a goal and set of parameters to search for a solution

• Successfully optimised the design
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Questions?

25

Optimization methods for 

engineering problems (01RGBRV)


