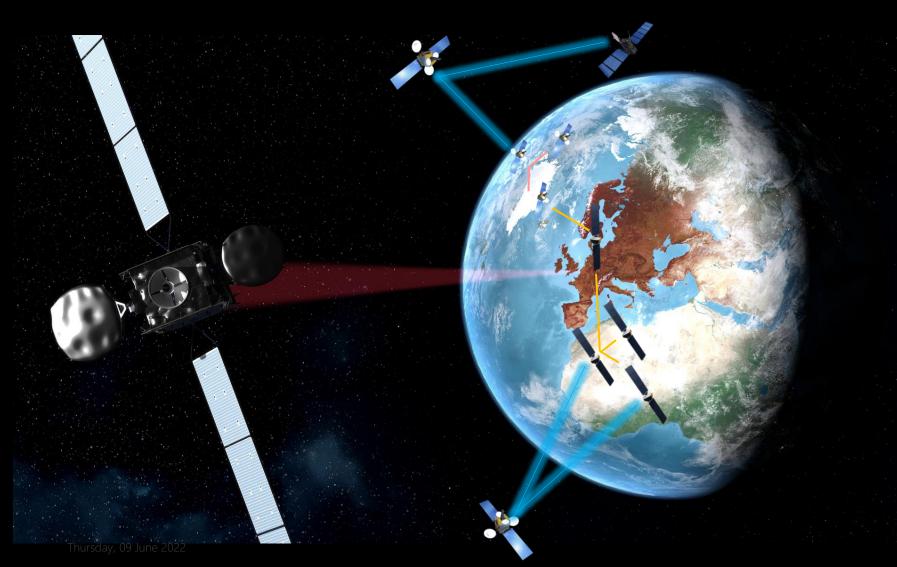
Kriging Optimisation of Antenna Elements for RF Satelliteto-Satellite Communications



Optimization methods for engineering problems (01RGBRV)

Adapted from ESA

31st of May 2022
Alessio Mascolini
Andras Holczer
Gabriel Maiolini Capez

Politecnico di Torino

Who are we?

PhD students in Electrical, Electronics, and Communications Engineering and Control and Computer Engineering

Agenda

- 1. Problem Summary
- 2. Kriging
- 3. Kriging Surrogate Optimisation
- 4. Optimisation Results
- 5. Q&A

Problem Summary

Providing space-based broadband low-latency services to low-Earth orbit *space* users

- Current solutions (Ground Station Networks and Data Relay Systems) suffer from *high data latency* AND/OR *limited capacity*
- Services for sea, air, land. Why not space?

Is the satellite visible?

Channel is usually Line-of-Sight (LOS):

- High propagation losses
- Minimum elevation angle $\theta_e \geq \theta_{min}$
- *Antenna* beamwidth, gain, steering capabilities (beamforming/steering/switching)



Geometry of the Visibility Problem

Moving to the Antenna...

Space Antenna Requirements in a Nutshell

- 1. Circular Polarisation (Axial Ratio < 3-dB)
- 2. 8-dBi @ 10 W in uplink (14.0-14.5 GHz)
- 3. 3-dBi in downlink (10.7-12.7 GHz)
- 4. Half-power beamwidth (HPBW) >= 100-deg
- 5. S11 < -10 dB
- 6. Competitive size, weight, and power

Single-beam or Multi-beam

Active, **passive**, or hybrid

Aperture, **patch**, or wire

Single element or **array**

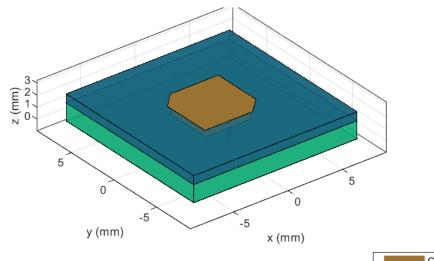
= low-cost, small footprint (~10 cm), lightweight (~100-500 g) solution

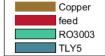
Today: Antenna Element Kriging Optimisation

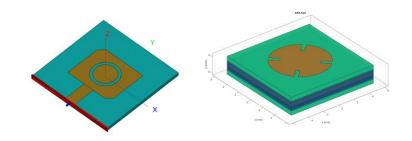
Antenna element is the *basis* of the array

- Probe-fed Truncated Stacked Patch
 - Driven-patch (RO3003) + Parasitic Patch (TLY5)
- Single Goal: Realised Gain >= 6-dB
 - Condenses redundant objectives (S11, AR)
- *Five* parameters to optimise:
 - *Two* Substrate Heights (coupling, inter-patch distance) ([0.127, 1.5] mm)
 - Two Patch Sizes ([5.0, 7.0] mm)
 - Probe Position ([-1.0, -2.0] mm)

 ✓ Acceptable simulation time per iteration (minutes) for a *proof-of-concept optimiser*

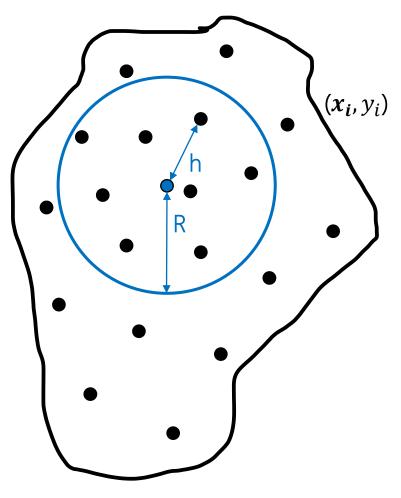






What is Kriging?

Kriging



- Interpolation technique widely applied in spatial analysis.
- Starting from known points, a new point y_{new} is estimated as the linear weighed combination using surrounding values.

$$y_{new} = \sum_{i=1}^{n} \omega_i y_i$$
 , where $\sum_{i=1}^{n} \omega_i = 1$

• To determine the weighing coefficients ω_i , we can use a variogram

Dataset for Kriging.

Variogram and fitted parametric model

Kriging - Variogram

A variogram shows the dissimilarity of data point pairs based on their spatial distance.

range

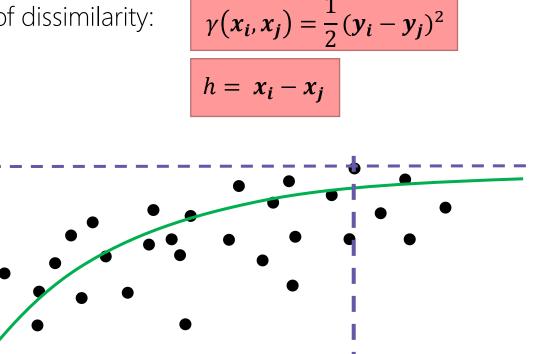
h

- Measure of dissimilarity:

 $\gamma(h)$

sill

nugget



There are various parametric variogram models:

Optimization methods for

engineering problems (01RGBRV)

- Nugget-effect
- Bounded linear
- Spherical
- Exponential
- Gaussian
- Matérn Class

Kriging – Optimal Weight Calculation

How to compute ω_i ? Many ways (simple, ordinary, universal)...

Ordinary Kriging: directly combines coefficient calculation and unbiasedness condition

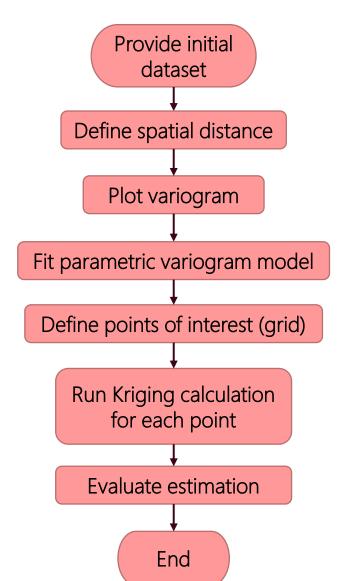
$y_{new} = \sum_{i=1}^{n} \omega_i y_i$
$\sum_{i=1}^{n} \omega_i = 1$

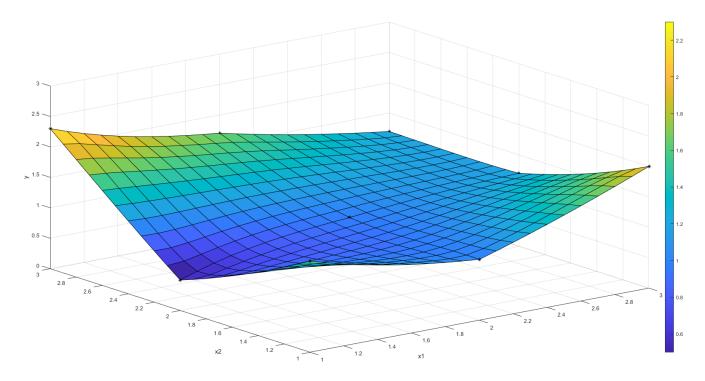
$$\begin{pmatrix} \gamma(x_1, x_1) & \gamma(x_1, x_2) & \cdots & \gamma(x_1, x_n) & 1 \\ \gamma(x_2, x_1) & \gamma(x_2, x_2) & \cdots & \gamma(x_2, x_n) & 1 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ \gamma(x_n, x_1) & \gamma(x_n, x_2) & \cdots & \gamma(x_n, x_n) & 1 \\ 1 & 1 & \cdots & 1 & 0 \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \vdots \\ \omega_n \\ \lambda \end{pmatrix} = \begin{pmatrix} \gamma(x_1, x_{new}) \\ \gamma(x_2, x_{new}) \\ \vdots \\ \gamma(x_n, x_{new}) \\ 1 \end{pmatrix}$$

Also provides variance of estimation:

$$\boldsymbol{\sigma^2} = \lambda + \sum_{i=1}^n \omega_i \gamma(x_i, x_{new})$$

Kriging Algorithm: Two Input Scalar Function Example

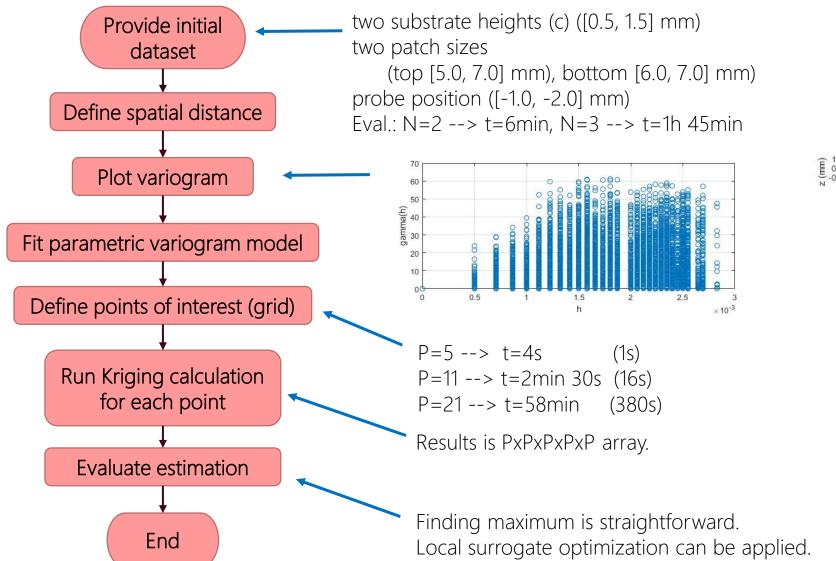


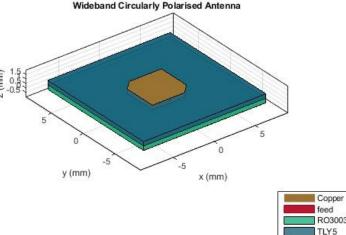


Kriging Interpolation of 2-Input Objective Function.

Kriging can be extended to multiple input scalar functions by properly defining the spatial distance.

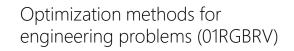
Kriging Algorithm: Antenna Element with 5 Input Variables





Initial Training Dataset

Kriging Surrogate Optimisation



Kriging Surrogate Optimisation

Core principle: reduce / simplify the number of *costly* objective function evaluations

How? By approximating it by a surrogate function, simpler and cheaper, using *Kriging*

Trade-off: efficiency x accuracy

Let's look under the hood!

Gaussian Process Regression (Kriging Model)

Model:
$$y(\mathbf{X}) = \beta + Z(\mathbf{X}), Z(\mathbf{X}) \sim N(\mathbf{0}, \mathbf{\Sigma}), \mathbf{\Sigma} = \operatorname{Cov}\left(Z(\mathbf{X}^{i}), Z(\mathbf{X}^{j})\right) = \sigma^{2} R(\mathbf{X}^{i}, \mathbf{X}^{j})$$

Where:

- β is a constant term
- y(X) is the exact fitness function (EFF)
- **Z(X)** is a zero-mean Gaussian stochastic process
- σ^2 is the process variance
- **X** is the training data-set
- $R(X^i, X^j) = \prod_{k=1}^n \exp(-\theta_k \|X_k^i X_k^j\|^{p_k})$ is a Gaussian Kernel, with
 - $p_k = 2$ (typ.) (Euclidean distance)
 - $heta_k$ is a hyperparameter

Global Surrogate Model (GSM)

Then, for any new point $X^* \not\subseteq X$:

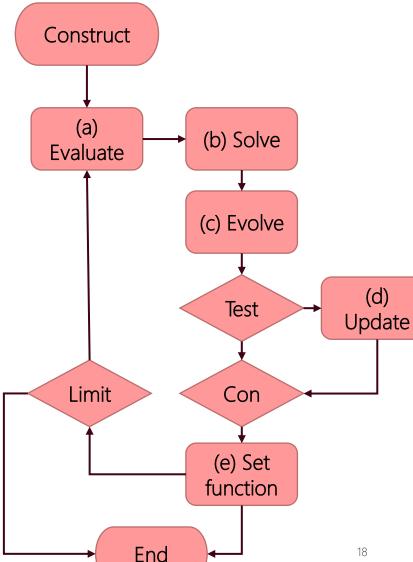
$$\hat{y}(\boldsymbol{X}^*) = \hat{\beta} + \boldsymbol{r}(\boldsymbol{X}^*)^T \boldsymbol{R}^{-1}(\boldsymbol{y} - \boldsymbol{1}\hat{\beta})$$

Where:

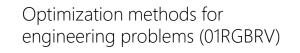
 $r(X^*)$ is the correlation vector between the new point and those of the training data set $\hat{y}(X^*)$ is the global fitness function (GFF)

Hierarchical Surrogate-Assisted Evolutionary Optimization (HSAEO)

- Construct a global Kriging model using available data points. Set global fitness function (GFF) equal to global surrogate model (GSM).
- 2. While iterations < limit:
 - *a) Evaluate* all individuals using *GFF*
 - b) For each top-ranking σ -% individuals in population (hierarchy)
 - *i.* Apply solver to individual by interleaving local SM and exact FF (EFF) by **Kriging**
 - *ii.* Update database with new points and exact FF
 - *iii. Replace individuals* with locally improved solution (Evolutionary)
 - *c) Evolve new population* (*Evolutionary, Genetic Algorithms*)
 - d) If GFF = EFF (Test)
 - *i.* Update database with new designs
 - *ii. Update GSM* using new database
 - e) If there is no improvement over Δ generations, that is, Convergence (Con), set GFF = EFF. Else, GFF = GSM.



f) End.



What are Genetic Algorithms?

Genetic algorithms: starts from a set of solutions (called a population) and, by applying a set of operators (cross-over/sharing, mutation), a new population is iteratively generated and evaluated.

- Advantages:
 - Simple
 - Applicable to a wide range of optimization problems
 - Good solutions that are harder to find through other methods
- Drawback: require a *large number of function evaluations*, which is *costly* when the population size is large or the function is expensive to compute

Solution: by using a surrogate function, we can **more efficiently** search the solution space, **improving performance** (in **quality** and **speed**)

How to evolve population?

Evolutionary Strategy (deterministic) or Genetic Algorithm (probabilistic)? <u>Hybrid solution</u>

Selection-based Lamarckian-learning

Only top-ranking σ -% individuals evolve in intermediate generation (short-lived offspring, *refinement*)

➤ Genetic Algorithm for New Generation

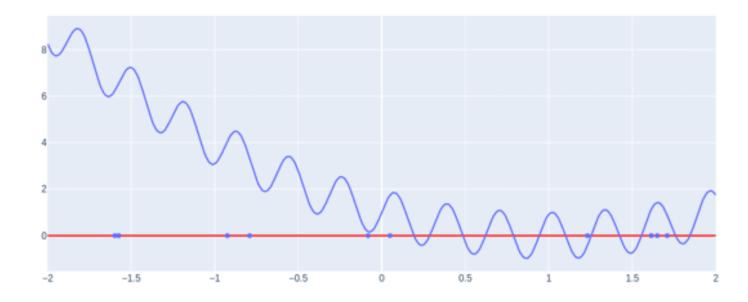
We employ a Gaussian Regression Process to compute the surrogate function, and update our surrogate as we find more suitable candidates for the best point.

Since this is a **stochastic model**, we can look at the standard deviation of our surrogate function. By varying its weight, we can *trade-off exploration and exploitation*

GPE Evaluation

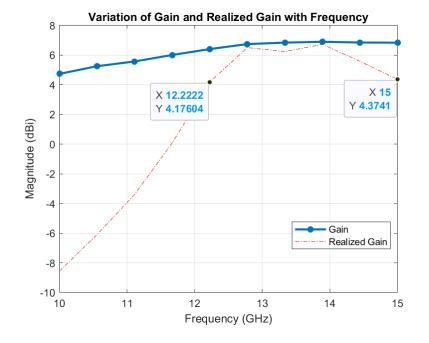
- Starting points are randomly chosen within the bounds and evaluated against the TFF to create the surrogate model, GP kernel: constant + RBF
- Top 50% of population reproduce using **crossover**
- Best points are evaluated against the TFF and GP is updated

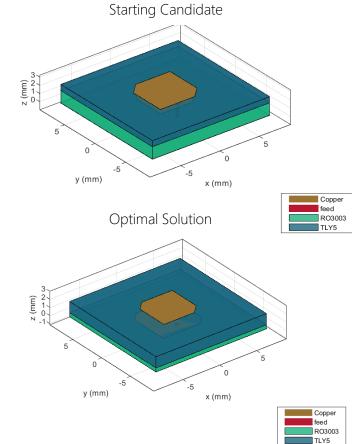
Simple example: 10-to-17 function evaluations of a 1D function



Kriging Interpolation Results

Parameter	Optimal Value
$L_{patch\ (bottom)}$	6.0 mm
$L_{patch\ (top)}$	5.2 mm
$h_{sub\ (bottom)}$	0.5 mm
$h_{sub\ (top)}$	1.4 mm
x_{feed}	1.5 mm
G _{max}	6.4 dBi

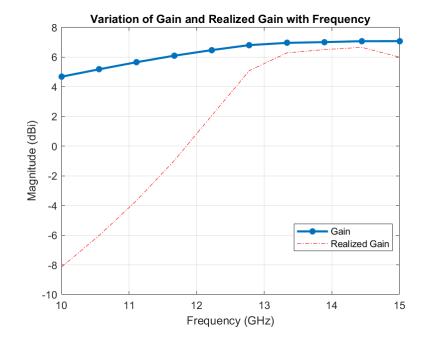


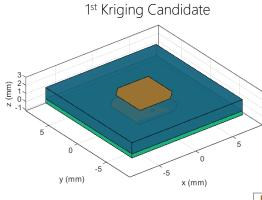


22

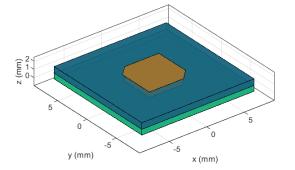
Full Optimisation Results

Parameter	Optimal Value
$L_{patch\ (bottom)}$	5.46 mm
$L_{patch\ (top)}$	5.81 mm
$h_{sub\ (bottom)}$	0.65 mm
$h_{sub\ (top)}$	0.80 mm
x_{feed}	1.34 mm
G _{max}	7.35 dBi





Optimal Solution



Copper feed RO3003 TLY5

Conclusion

We:

- Modelled a stacked-patch antenna element
- Implemented a proof-of-concept Kriging optimiser
- Defined a goal and set of parameters to search for a solution
- Successfully optimised the design

Questions?